LM2: Large Memory Models
- URL: http://arxiv.org/abs/2502.06049v1
- Date: Sun, 09 Feb 2025 22:11:42 GMT
- Title: LM2: Large Memory Models
- Authors: Jikun Kang, Wenqi Wu, Filippos Christianos, Alex J. Chan, Fraser Greenlee, George Thomas, Marvin Purtorab, Andy Toulis,
- Abstract summary: This paper introduces the Large Memory Model (LM2), a decoder-only Transformer architecture enhanced with an auxiliary memory module.<n> Experimental results on the BABILong benchmark demonstrate that the LM2model outperforms both the memory-augmented RMT model by 37.1% and the baseline Llama-3.2 model by 86.3% on average across tasks.
- Score: 11.320069795732058
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces the Large Memory Model (LM2), a decoder-only Transformer architecture enhanced with an auxiliary memory module that aims to address the limitations of standard Transformers in multi-step reasoning, relational argumentation, and synthesizing information distributed over long contexts. The proposed LM2 incorporates a memory module that acts as a contextual representation repository, interacting with input tokens via cross attention and updating through gating mechanisms. To preserve the Transformers general-purpose capabilities, LM2 maintains the original information flow while integrating a complementary memory pathway. Experimental results on the BABILong benchmark demonstrate that the LM2model outperforms both the memory-augmented RMT model by 37.1% and the baseline Llama-3.2 model by 86.3% on average across tasks. LM2 exhibits exceptional capabilities in multi-hop inference, numerical reasoning, and large-context question-answering. On the MMLU dataset, it achieves a 5.0% improvement over a pre-trained vanilla model, demonstrating that its memory module does not degrade performance on general tasks. Further, in our analysis, we explore the memory interpretability, effectiveness of memory modules, and test-time behavior. Our findings emphasize the importance of explicit memory in enhancing Transformer architectures.
Related papers
- R$^3$Mem: Bridging Memory Retention and Retrieval via Reversible Compression [24.825945729508682]
We propose R$3$Mem, a memory network that optimize both information Retention and Retrieval.
R$3$Mem employs virtual memory tokens to compress and encode infinitely long histories, further enhanced by a hierarchical compression strategy.
Experiments demonstrate that our memory design achieves state-of-the-art performance in long-context language modeling and retrieval-augmented generation tasks.
arXiv Detail & Related papers (2025-02-21T21:39:00Z) - Memory Layers at Scale [67.00854080570979]
This work takes memory layers beyond proof-of-concept, proving their utility at contemporary scale.<n>On downstream tasks, language models augmented with our improved memory layer outperform dense models with more than twice the budget, as well as mixture-of-expert models when matched for both compute and parameters.<n>We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
arXiv Detail & Related papers (2024-12-12T23:56:57Z) - Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules [96.21649779507831]
We propose a novel architecture dubbed mixture-of-modules (MoM)
MoM is motivated by an intuition that any layer, regardless of its position, can be used to compute a token.
We show that MoM provides not only a unified framework for Transformers but also a flexible and learnable approach for reducing redundancy.
arXiv Detail & Related papers (2024-07-09T08:50:18Z) - B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
We develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an composable module.
B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens.
arXiv Detail & Related papers (2024-07-08T18:41:01Z) - MEMORYLLM: Towards Self-Updatable Large Language Models [101.3777486749529]
Existing Large Language Models (LLMs) usually remain static after deployment.
We introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool.
MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier.
arXiv Detail & Related papers (2024-02-07T07:14:11Z) - RCMHA: Relative Convolutional Multi-Head Attention for Natural Language
Modelling [0.0]
Relative Multi-Head Attention (RMHA) has superior accuracy, boasting a score of 0.572 in comparison to alternative attention modules.
RMHA emerges as the most frugal, demonstrating an average consumption of 2.98 GB, surpassing RMHA which necessitates 3.5 GB.
arXiv Detail & Related papers (2023-08-07T09:24:24Z) - Recurrent Action Transformer with Memory [39.58317527488534]
This paper proposes a novel model architecture that incorporates a recurrent memory mechanism designed to regulate information retention.
We conduct experiments on memory-intensive environments (ViZDoom-Two-Colors, T-Maze, Memory Maze, Minigrid-Memory), classic Atari games, and MuJoCo control environments.
The results show that using memory can significantly improve performance in memory-intensive environments, while maintaining or improving results in classic environments.
arXiv Detail & Related papers (2023-06-15T19:29:08Z) - Memory-Guided Semantic Learning Network for Temporal Sentence Grounding [55.31041933103645]
We propose a memory-augmented network that learns and memorizes the rarely appeared content in TSG tasks.
MGSL-Net consists of three main parts: a cross-modal inter-action module, a memory augmentation module, and a heterogeneous attention module.
arXiv Detail & Related papers (2022-01-03T02:32:06Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z) - Memory Transformer [0.31406146587437894]
Transformer-based models have achieved state-of-the-art results in many natural language processing tasks.
Memory-augmented neural networks (MANNs) extend traditional neural architectures with general-purpose memory for representations.
We evaluate these memory augmented Transformers and demonstrate that presence of memory positively correlates with the model performance.
arXiv Detail & Related papers (2020-06-20T09:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.