Fair-MoE: Fairness-Oriented Mixture of Experts in Vision-Language Models
- URL: http://arxiv.org/abs/2502.06094v1
- Date: Mon, 10 Feb 2025 01:45:26 GMT
- Title: Fair-MoE: Fairness-Oriented Mixture of Experts in Vision-Language Models
- Authors: Peiran Wang, Linjie Tong, Jiaxiang Liu, Zuozhu Liu,
- Abstract summary: We propose Fair-MoE, a model specifically designed to ensure both fairness and effectiveness.
Fair-MoE comprises two key components: textitthe Fairness-Oriented Mixture of Experts (FO-MoE) and textitthe Fairness-Oriented Loss (FOL)
- Score: 7.808926474503611
- License:
- Abstract: Fairness is a fundamental principle in medical ethics. Vision Language Models (VLMs) have shown significant potential in the medical field due to their ability to leverage both visual and linguistic contexts, reducing the need for large datasets and enabling the performance of complex tasks. However, the exploration of fairness within VLM applications remains limited. Applying VLMs without a comprehensive analysis of fairness could lead to concerns about equal treatment opportunities and diminish public trust in medical deep learning models. To build trust in medical VLMs, we propose Fair-MoE, a model specifically designed to ensure both fairness and effectiveness. Fair-MoE comprises two key components: \textit{the Fairness-Oriented Mixture of Experts (FO-MoE)} and \textit{the Fairness-Oriented Loss (FOL)}. FO-MoE is designed to leverage the expertise of various specialists to filter out biased patch embeddings and use an ensemble approach to extract more equitable information relevant to specific tasks. FOL is a novel fairness-oriented loss function that not only minimizes the distances between different attributes but also optimizes the differences in the dispersion of various attributes' distributions. Extended experiments demonstrate the effectiveness and fairness of Fair-MoE. Tested on the Harvard-FairVLMed dataset, Fair-MoE showed improvements in both fairness and accuracy across all four attributes. Code will be publicly available.
Related papers
- FairCLIP: Harnessing Fairness in Vision-Language Learning [20.743027598445796]
We introduce the first fair vision-language medical dataset that provides detailed demographic attributes, groundtruth labels, and clinical notes.
As the first fair vision-language medical dataset of its kind, HarvardFairMed holds the potential to catalyze the development of machine learning models that are both aware and clinically effective.
arXiv Detail & Related papers (2024-03-29T03:15:31Z) - Fairness-Aware Interpretable Modeling (FAIM) for Trustworthy Machine
Learning in Healthcare [6.608905791768002]
We propose Fairness-Aware Interpretable Modeling (FAIM) to improve model fairness without compromising performance.
FAIM features an interactive interface to identify a "fairer" model from a set of high-performing models.
We show FAIM models not only exhibited satisfactory discriminatory performance but also significantly mitigated biases as measured by well-established fairness metrics.
arXiv Detail & Related papers (2024-03-08T11:51:00Z) - Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware
Classification [7.696798306913988]
We introduce a framework outlining fairness regulations aligned with various fairness definitions.
We explore the configuration for in-context learning and the procedure for selecting in-context demonstrations using RAG.
Experiments conducted with different LLMs indicate that GPT-4 delivers superior results in terms of both accuracy and fairness compared to other models.
arXiv Detail & Related papers (2024-02-28T17:29:27Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Two Simple Ways to Learn Individual Fairness Metrics from Data [47.6390279192406]
Individual fairness is an intuitive definition of algorithmic fairness that addresses some of the drawbacks of group fairness.
The lack of a widely accepted fair metric for many ML tasks is the main barrier to broader adoption of individual fairness.
We show empirically that fair training with the learned metrics leads to improved fairness on three machine learning tasks susceptible to gender and racial biases.
arXiv Detail & Related papers (2020-06-19T23:47:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.