Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data
- URL: http://arxiv.org/abs/2310.03146v5
- Date: Mon, 30 Dec 2024 16:54:13 GMT
- Title: Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data
- Authors: Son Nguyen, Adam Wang, Albert Montillo,
- Abstract summary: We propose the Fair Mixed Effects Deep Learning (Fair MEDL) framework.
This framework quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE) through: 1) a cluster adversary for learning invariant FE, 2) a Bayesian neural network for RE, and 3) a mixing function combining FE and RE for final predictions.
Fair MEDL framework improves fairness by 86.4% for Age, 64.9% for Race, 57.8% for Sex, and 36.2% for Marital status, while maintaining robust predictive performance.
- Score: 6.596656267996196
- License:
- Abstract: Traditional deep learning (DL) models have two ubiquitous limitations. First, they assume training samples are independent and identically distributed (i.i.d), an assumption often violated in real-world datasets where samples have additional correlation due to repeat measurements (e.g., on the same participants in a longitudinal study or cells from the same sequencer). This leads to performance degradation, limited generalization, and covariate confounding, which induces Type I and Type II errors. Second, DL models typically prioritize overall accuracy, favoring accuracy on the majority while sacrificing performance for underrepresented subpopulations, leading to unfair, biased models. This is critical to remediate, particularly in models which influence decisions regarding loan approvals and healthcare. To address these issues, we propose the Fair Mixed Effects Deep Learning (Fair MEDL) framework. This framework quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE) through: 1) a cluster adversary for learning invariant FE, 2) a Bayesian neural network for RE, and 3) a mixing function combining FE and RE for final predictions. Fairness is enhanced through architectural and loss function changes introduced by an adversarial debiasing network. We formally define and demonstrate improved fairness across three metrics: equalized odds, demographic parity, and counterfactual fairness, for both classification and regression tasks. Our method also identifies and de-weights confounded covariates, mitigating Type I and II errors. The framework is comprehensively evaluated across three datasets spanning two industries, including finance and healthcare. The Fair MEDL framework improves fairness by 86.4% for Age, 64.9% for Race, 57.8% for Sex, and 36.2% for Marital status, while maintaining robust predictive performance.
Related papers
- Fair CoVariance Neural Networks [34.68621550644667]
We propose Fair coVariance Neural Networks (FVNNs), which perform graph convolutions on the covariance matrix for both fair and accurate predictions.
We prove that FVNNs are intrinsically fairer than analogous PCA approaches thanks to their stability in low sample regimes.
arXiv Detail & Related papers (2024-09-13T06:24:18Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
We present a simple, yet effective method based on normalisation (FaiReg) for regression problems.
We compare it with two standard methods for fairness, namely data balancing and adversarial training.
The results show the superior performance of diminishing the effects of unfairness better than data balancing.
arXiv Detail & Related papers (2022-02-02T12:26:25Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
arXiv Detail & Related papers (2020-08-30T09:06:03Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.