論文の概要: Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting
- arxiv url: http://arxiv.org/abs/2502.06151v1
- Date: Mon, 10 Feb 2025 04:42:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:36:17.739280
- Title: Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting
- Title(参考訳): Powerformer: 時系列予測のための軽量因果注意変換器
- Authors: Kareem Hegazy, Michael W. Mahoney, N. Benjamin Erichson,
- Abstract要約: 我々は,非因果重みをスムーズな重み付き崩壊に応じて再加重する因果重みに置き換える新しいトランスフォーマーであるPowerformerを紹介する。
我々の実証実験の結果,Powerformer は公開時系列ベンチマークで最先端の精度を達成できた。
分析の結果、トレーニング中にモデルの局所性バイアスが増幅され、時系列データとパワールールに基づく注意の相互作用が示されることがわかった。
- 参考スコア(独自算出の注目度): 50.298817606660826
- License:
- Abstract: Transformers have recently shown strong performance in time-series forecasting, but their all-to-all attention mechanism overlooks the (temporal) causal and often (temporally) local nature of data. We introduce Powerformer, a novel Transformer variant that replaces noncausal attention weights with causal weights that are reweighted according to a smooth heavy-tailed decay. This simple yet effective modification endows the model with an inductive bias favoring temporally local dependencies, while still allowing sufficient flexibility to learn the unique correlation structure of each dataset. Our empirical results demonstrate that Powerformer not only achieves state-of-the-art accuracy on public time-series benchmarks, but also that it offers improved interpretability of attention patterns. Our analyses show that the model's locality bias is amplified during training, demonstrating an interplay between time-series data and power-law-based attention. These findings highlight the importance of domain-specific modifications to the Transformer architecture for time-series forecasting, and they establish Powerformer as a strong, efficient, and principled baseline for future research and real-world applications.
- Abstract(参考訳): トランスフォーマーは最近、時系列予測において強いパフォーマンスを示しているが、そのすべての注意メカニズムは、(時間的)因果関係と、しばしば(時間的に)局所的なデータの性質を見落としている。
我々は,非因果重みをスムーズな重み付き崩壊に応じて再加重する因果重みに置き換える新しいトランスフォーマーであるPowerformerを紹介する。
この単純で効果的な修正は、モデルに時間的局所的な依存関係を好む帰納的バイアスを与える一方で、データセットのユニークな相関構造を学ぶのに十分な柔軟性を与える。
実証実験の結果,Powerformerは時系列ベンチマークで最先端の精度を達成できるだけでなく,注意パターンの解釈性の向上も実現している。
分析の結果、トレーニング中にモデルの局所性バイアスが増幅され、時系列データとパワールールに基づく注意の相互作用が示されることがわかった。
これらの知見は、時系列予測のためのTransformerアーキテクチャのドメイン固有の変更の重要性を強調し、将来の研究や実世界のアプリケーションのための強力で効率的で原則化されたベースラインとしてPowerformerを確立する。
関連論文リスト
- ExoTST: Exogenous-Aware Temporal Sequence Transformer for Time Series Prediction [11.511830352094353]
時系列予測のためのトランスフォーマーベースのフレームワークであるExoTSTを提案する。
過去の変数と現在の変数を統合するために、ExoTSTは、新しい時間的相互モダリティ融合モジュールを導入した。
実世界の炭素フラックスデータセットと時系列ベンチマークの実験は、ExoTSTの優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-16T03:04:37Z) - TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables [75.83318701911274]
TimeXerは外部情報を取り込み、内因性変数の予測を強化する。
TimeXerは、12の現実世界の予測ベンチマークで一貫した最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-29T11:54:35Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
多くの実用化には時系列予測が不可欠である。
トランスフォーマーの重要な特徴、注意機構、データ表現を強化するために動的に埋め込みを融合させ、しばしば注意重みを副産物の役割に還元する。
提案手法は,時系列の主表現として注目重みを高くし,データポイント間の時間的関係を利用して予測精度を向上させる。
論文 参考訳(メタデータ) (2024-02-08T03:00:50Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Two Steps Forward and One Behind: Rethinking Time Series Forecasting
with Deep Learning [7.967995669387532]
Transformerは、人工知能ニューラルネットワークの世界に革命をもたらした、非常に成功したディープラーニングモデルである。
時系列予測領域に適用したトランスフォーマーモデルの有効性について検討する。
性能が良く、より複雑でない代替モデル一式を提案する。
論文 参考訳(メタデータ) (2023-04-10T12:47:42Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
正規化変換器(Reguformers)と呼ばれる効率的な変換器のクラスを導入する。
私たちの実験の焦点は、石油とガスのデータ、すなわちウェルログにあります。
このような問題に対する我々のモデルを評価するために、20以上の井戸からなるウェルログからなる産業規模のオープンデータセットで作業する。
論文 参考訳(メタデータ) (2022-12-29T09:56:33Z) - Non-stationary Transformers: Exploring the Stationarity in Time Series
Forecasting [86.33543833145457]
本稿では,2つの相互依存モジュールを持つ汎用フレームワークとして,非定常変圧器を提案する。
我々のフレームワークは、メインストリームのトランスフォーマーを、大きなマージンで継続的に増加させ、トランスフォーマーで49.43%、インフォーマーで47.34%、改革派で46.89%削減します。
論文 参考訳(メタデータ) (2022-05-28T12:27:27Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting [35.76867542099019]
時系列予測のための変換器の改良に指数的スムース化の原理を利用する新しい時系列変換器アーキテクチャであるETSFormerを提案する。
特に,時系列予測における古典的指数的スムージング手法に着想を得て,バニラ変圧器の自己保持機構を置き換えるために,新しい指数的スムージングアテンション(ESA)と周波数アテンション(FA)を提案する。
論文 参考訳(メタデータ) (2022-02-03T02:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。