Non-literal Understanding of Number Words by Language Models
- URL: http://arxiv.org/abs/2502.06204v1
- Date: Mon, 10 Feb 2025 07:03:00 GMT
- Title: Non-literal Understanding of Number Words by Language Models
- Authors: Polina Tsvilodub, Kanishk Gandhi, Haoran Zhao, Jan-Philipp Fränken, Michael Franke, Noah D. Goodman,
- Abstract summary: Humans naturally interpret numbers non-literally, combining context, world knowledge, and speaker intent.
We investigate whether large language models (LLMs) interpret numbers similarly, focusing on hyperbole and pragmatic halo effects.
- Score: 33.24263583093367
- License:
- Abstract: Humans naturally interpret numbers non-literally, effortlessly combining context, world knowledge, and speaker intent. We investigate whether large language models (LLMs) interpret numbers similarly, focusing on hyperbole and pragmatic halo effects. Through systematic comparison with human data and computational models of pragmatic reasoning, we find that LLMs diverge from human interpretation in striking ways. By decomposing pragmatic reasoning into testable components, grounded in the Rational Speech Act framework, we pinpoint where LLM processing diverges from human cognition -- not in prior knowledge, but in reasoning with it. This insight leads us to develop a targeted solution -- chain-of-thought prompting inspired by an RSA model makes LLMs' interpretations more human-like. Our work demonstrates how computational cognitive models can both diagnose AI-human differences and guide development of more human-like language understanding capabilities.
Related papers
- Human-like conceptual representations emerge from language prediction [72.5875173689788]
We investigated the emergence of human-like conceptual representations within large language models (LLMs)
We found that LLMs were able to infer concepts from definitional descriptions and construct representation spaces that converge towards a shared, context-independent structure.
Our work supports the view that LLMs serve as valuable tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - HLB: Benchmarking LLMs' Humanlikeness in Language Use [2.438748974410787]
We present a comprehensive humanlikeness benchmark (HLB) evaluating 20 large language models (LLMs)
We collected responses from over 2,000 human participants and compared them to outputs from the LLMs in these experiments.
Our results reveal fine-grained differences in how well LLMs replicate human responses across various linguistic levels.
arXiv Detail & Related papers (2024-09-24T09:02:28Z) - Semantic Structure-Mapping in LLM and Human Analogical Reasoning [14.412456982731467]
Analogical reasoning is considered core to human learning and cognition.
Recent studies have compared the analogical reasoning abilities of human subjects and Large Language Models (LLMs) on abstract symbol manipulation tasks.
This ability to draw analogies that link language to non-linguistic domains is thought to play a crucial role in language acquisition and broader cognitive development.
arXiv Detail & Related papers (2024-06-19T20:07:37Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - Divergences between Language Models and Human Brains [59.100552839650774]
We systematically explore the divergences between human and machine language processing.
We identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense.
Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
We study the process of language driving and influencing social reasoning in a probabilistic goal inference domain.
We propose a neuro-symbolic model that carries out goal inference from linguistic inputs of agent scenarios.
Our model closely matches human response patterns and better predicts human judgements than using an LLM alone.
arXiv Detail & Related papers (2023-06-25T19:38:01Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z) - Context Limitations Make Neural Language Models More Human-Like [32.488137777336036]
We show discrepancies in context access between modern neural language models (LMs) and humans in incremental sentence processing.
Additional context limitation was needed to make LMs better simulate human reading behavior.
Our analyses also showed that human-LM gaps in memory access are associated with specific syntactic constructions.
arXiv Detail & Related papers (2022-05-23T17:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.