Protecting Heralded Single Photons Generated from Double-$Λ$ Biphoton Sources with Doppler-Broadened Atomic Media
- URL: http://arxiv.org/abs/2502.06344v1
- Date: Mon, 10 Feb 2025 10:54:58 GMT
- Title: Protecting Heralded Single Photons Generated from Double-$Λ$ Biphoton Sources with Doppler-Broadened Atomic Media
- Authors: Wei-Kai Huang, Tse-Yu Lin, Pei-Yu Tu, Yong-Fan Chen, Ite A. Yu,
- Abstract summary: Biphoton sources using hot atoms offer advantages of narrow linewidth, stable frequency, and tunable linewidth.
In this study, we investigated a hot-atom SFWM double-$Lambda$ biphoton source.
We propose a new theoretical framework for a previously unexplored physical mechanism.
- Score: 1.143722348196401
- License:
- Abstract: Biphoton sources that use room-temperature or hot atoms are valuable for real-world applications in long-distance quantum communication and photonic quantum computation. The heralded single photons produced by biphoton sources using the double-$\Lambda$ spontaneous four-wave mixing (SFWM) process offer advantages of narrow linewidth, stable frequency, and tunable linewidth -- qualities not found in other types of biphoton sources. In this study, we investigated a hot-atom SFWM double-$\Lambda$ biphoton source. We discovered that, under the condition counterintuitive to the present theory, heralded single photons of the source enhanced their generation rate by a factor of 3.6, heralding probability by a factor of 3.0, temporal width by 2.1, and spectral brightness by a factor of 10. These unexpected findings led us to propose a new theoretical framework for a previously unexplored physical mechanism. Our proposed theory effectively explains the observed results. Traditionally, similar spectral brightness (SB) from atom-based sources resulted in a lower signal-to-background ratio (SBR) than crystal- or chip-based biphoton sources, mainly due to poorer heralding probabilities. In our work, we experimentally demonstrated that the SBR improved by a factor of 4.8 while maintaining a comparable SB. As a result, the SBR performance of the atom-based biphoton source is now on par with that of crystal- or chip-based sources. This research introduces a new tuning parameter for double-$\Lambda$ SFWM biphoton sources, enhances our understanding of biphoton generation, and opens new avenues for improving the performance of these sources.
Related papers
- A Highly Efficient and Pure Few-Photon Source on Chip [4.016925380411567]
We report on multi-photon statistics of correlated twin beams produced in a periodic poled micro-ring resonator on thin-film lithium niobate.
The findings of our research highlight the potential of this nanophotonic platform for generating non-classical, few-photon states.
arXiv Detail & Related papers (2023-09-26T19:54:57Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Room-temperature biphoton source with a spectral brightness near the
ultimate limit [2.133148988751104]
We report a hot-atom SFWM source of biphotons with a linewidth of 960 kHz and a generation rate of 3.7$times$ $105$ pairs/s.
The high generation rate, together with the narrow linewidth, results in a spectral brightness of 3.8$times$ $105$ pairs/s/MHz.
This work demonstrates a significant advancement and provides useful knowledge in the quantum technology using photons.
arXiv Detail & Related papers (2021-09-19T05:25:17Z) - Bright multiplexed source of indistinguishable single photons with
tunable GHz-bandwidth at room temperature [0.0]
We realize a spatially-multiplexed heralded source of single photons that are inherently compatible with the commonly employed D2 line of rubidium.
Our source is based on four-wave mixing in hot rubidium vapor, requiring no laser cooling or optical cavities, and generates single photons with high rate and low noise.
arXiv Detail & Related papers (2021-04-19T14:23:33Z) - Scalable multiphoton generation from cavity-synchronized single-photon sources [5.187669487527287]
Design relies on multiple single-photon sources, each coupled to a waveguide, and all of them interact with a common cavity mode.
For a state-of-the-art circuit QED implementation, this scheme supports the creation of single photons with purity, indistinguishability, and efficiency of $99%$ at rates of $sim $MHz.
This is orders of magnitude more efficient than previous demultiplexed sources for boson sampling and enables the realization of deterministic multi-photon sources and scalable quantum information processing with photons.
arXiv Detail & Related papers (2020-09-04T20:20:05Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.