FOCUS - Multi-View Foot Reconstruction From Synthetically Trained Dense Correspondences
- URL: http://arxiv.org/abs/2502.06367v1
- Date: Mon, 10 Feb 2025 11:36:45 GMT
- Title: FOCUS - Multi-View Foot Reconstruction From Synthetically Trained Dense Correspondences
- Authors: Oliver Boyne, Roberto Cipolla,
- Abstract summary: We look at the specific case of human foot reconstruction.
We seek to extract rich per-pixel geometry cues from multi-view RGB images.
We show that our reconstruction achieves state-of-the-art reconstruction quality in a few-view setting.
- Score: 23.644116579294547
- License:
- Abstract: Surface reconstruction from multiple, calibrated images is a challenging task - often requiring a large number of collected images with significant overlap. We look at the specific case of human foot reconstruction. As with previous successful foot reconstruction work, we seek to extract rich per-pixel geometry cues from multi-view RGB images, and fuse these into a final 3D object. Our method, FOCUS, tackles this problem with 3 main contributions: (i) SynFoot2, an extension of an existing synthetic foot dataset to include a new data type: dense correspondence with the parameterized foot model FIND; (ii) an uncertainty-aware dense correspondence predictor trained on our synthetic dataset; (iii) two methods for reconstructing a 3D surface from dense correspondence predictions: one inspired by Structure-from-Motion, and one optimization-based using the FIND model. We show that our reconstruction achieves state-of-the-art reconstruction quality in a few-view setting, performing comparably to state-of-the-art when many views are available, and runs substantially faster. We release our synthetic dataset to the research community. Code is available at: https://github.com/OllieBoyne/FOCUS
Related papers
- FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.
Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
arXiv Detail & Related papers (2025-02-17T18:54:05Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - HandBooster: Boosting 3D Hand-Mesh Reconstruction by Conditional Synthesis and Sampling of Hand-Object Interactions [68.28684509445529]
We present HandBooster, a new approach to uplift the data diversity and boost the 3D hand-mesh reconstruction performance.
First, we construct versatile content-aware conditions to guide a diffusion model to produce realistic images with diverse hand appearances, poses, views, and backgrounds.
Then, we design a novel condition creator based on our similarity-aware distribution sampling strategies to deliberately find novel and realistic interaction poses that are distinctive from the training set.
arXiv Detail & Related papers (2024-03-27T13:56:08Z) - FOUND: Foot Optimization with Uncertain Normals for Surface Deformation Using Synthetic Data [27.53648027412686]
We seek to develop a method for few-view reconstruction, for the case of the human foot.
To solve this task, we must extract rich geometric cues from RGB images, before carefully fusing them into a final 3D object.
We show that our normal predictor outperforms all off-the-shelf equivalents significantly on real images.
arXiv Detail & Related papers (2023-10-27T17:11:07Z) - Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from
Sparse Image Ensemble [72.3681707384754]
Hi-LASSIE performs 3D articulated reconstruction from only 20-30 online images in the wild without any user-defined shape or skeleton templates.
First, instead of relying on a manually annotated 3D skeleton, we automatically estimate a class-specific skeleton from the selected reference image.
Second, we improve the shape reconstructions with novel instance-specific optimization strategies that allow reconstructions to faithful fit on each instance.
arXiv Detail & Related papers (2022-12-21T14:31:33Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
We introduce an approach that accurately reconstructs 3D human poses and detailed 3D full-body geometric models from single images in realtime.
Key idea of our approach is a novel end-to-end multi-task deep learning framework that uses single images to predict five outputs simultaneously.
We show the system advances the frontier of 3D human body and pose reconstruction from single images by quantitative evaluations and comparisons with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-22T04:26:11Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images [49.52782544649703]
We propose a novel approach to reconstruct 3D human body shapes based on a sparse set of RGBD frames.
The main challenge is how to robustly fuse these sparse frames into a canonical 3D model.
Our framework is flexible, with potential applications going beyond shape reconstruction.
arXiv Detail & Related papers (2020-06-05T18:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.