Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo
- URL: http://arxiv.org/abs/2502.06379v1
- Date: Mon, 10 Feb 2025 11:59:02 GMT
- Title: Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo
- Authors: Filip Ekström Kelvinius, Zheng Zhao, Fredrik Lindsten,
- Abstract summary: We design a sequential Monte Carlo method for linear-Gaussian inverse problems.
We demonstrate the effectiveness of our Decoupled Sequential Monte Carlo (DDSMC) algorithm on both synthetic data and image reconstruction tasks.
- Score: 11.629137473977888
- License:
- Abstract: A recent line of research has exploited pre-trained generative diffusion models as priors for solving Bayesian inverse problems. We contribute to this research direction by designing a sequential Monte Carlo method for linear-Gaussian inverse problems which builds on ``decoupled diffusion", where the generative process is designed such that larger updates to the sample are possible. The method is asymptotically exact and we demonstrate the effectiveness of our Decoupled Diffusion Sequential Monte Carlo (DDSMC) algorithm on both synthetic data and image reconstruction tasks. Further, we demonstrate how the approach can be extended to discrete data.
Related papers
- A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.
Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.
This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - Enhancing Diffusion Models for Inverse Problems with Covariance-Aware Posterior Sampling [3.866047645663101]
In computer vision, for example, tasks such as inpainting, deblurring, and super resolution can be effectively modeled as inverse problems.
DDPMs are shown to provide a promising solution to noisy linear inverse problems without the need for additional task specific training.
arXiv Detail & Related papers (2024-12-28T06:17:44Z) - Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
Diffusion models can generate a variety of high-quality images by modeling complex data distributions.
Most of the existing diffusion-based methods integrate data consistency steps within the diffusion reverse sampling process.
We show that the existing approximations are either insufficient or computationally inefficient.
arXiv Detail & Related papers (2024-09-13T15:20:03Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Regularization by denoising: Bayesian model and Langevin-within-split
Gibbs sampling [6.453497703172228]
This paper introduces a Bayesian framework for image inversion by deriving a probabilistic counterpart to the regularization-by-denoising (RED) paradigm.
It implements a Monte Carlo algorithm specifically tailored for sampling from the resulting posterior distribution, based on anally exact data augmentation (AXDA)
The proposed algorithm is an approximate instance of split Gibbs sampling (SGS) which embeds one Langevin Monte Carlo step.
arXiv Detail & Related papers (2024-02-19T17:12:16Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.