Enhancing Diffusion Models for Inverse Problems with Covariance-Aware Posterior Sampling
- URL: http://arxiv.org/abs/2412.20045v1
- Date: Sat, 28 Dec 2024 06:17:44 GMT
- Title: Enhancing Diffusion Models for Inverse Problems with Covariance-Aware Posterior Sampling
- Authors: Shayan Mohajer Hamidi, En-Hui Yang,
- Abstract summary: In computer vision, for example, tasks such as inpainting, deblurring, and super resolution can be effectively modeled as inverse problems.
DDPMs are shown to provide a promising solution to noisy linear inverse problems without the need for additional task specific training.
- Score: 3.866047645663101
- License:
- Abstract: Inverse problems exist in many disciplines of science and engineering. In computer vision, for example, tasks such as inpainting, deblurring, and super resolution can be effectively modeled as inverse problems. Recently, denoising diffusion probabilistic models (DDPMs) are shown to provide a promising solution to noisy linear inverse problems without the need for additional task specific training. Specifically, with the prior provided by DDPMs, one can sample from the posterior by approximating the likelihood. In the literature, approximations of the likelihood are often based on the mean of conditional densities of the reverse process, which can be obtained using Tweedie formula. To obtain a better approximation to the likelihood, in this paper we first derive a closed form formula for the covariance of the reverse process. Then, we propose a method based on finite difference method to approximate this covariance such that it can be readily obtained from the existing pretrained DDPMs, thereby not increasing the complexity compared to existing approaches. Finally, based on the mean and approximated covariance of the reverse process, we present a new approximation to the likelihood. We refer to this method as covariance-aware diffusion posterior sampling (CA-DPS). Experimental results show that CA-DPS significantly improves reconstruction performance without requiring hyperparameter tuning. The code for the paper is put in the supplementary materials.
Related papers
- Geophysical inverse problems with measurement-guided diffusion models [0.4532517021515834]
I consider two sampling algorithms recently proposed under the name of Diffusion Posterior Sampling (DPS) and Pseudo-inverse Guided Diffusion Model (PGDM)
In DPS, the guidance term is obtained by applying the adjoint of the modeling operator to the residual obtained from a one-step denoising estimate of the solution.
On the other hand, PGDM utilizes a pseudo-inverse operator that originates from the fact that the one-step denoised solution is not assumed to be deterministic.
arXiv Detail & Related papers (2025-01-08T23:33:50Z) - Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
Diffusion models can generate a variety of high-quality images by modeling complex data distributions.
Most of the existing diffusion-based methods integrate data consistency steps within the diffusion reverse sampling process.
We show that the existing approximations are either insufficient or computationally inefficient.
arXiv Detail & Related papers (2024-09-13T15:20:03Z) - Think Twice Before You Act: Improving Inverse Problem Solving With MCMC [40.5682961122897]
We propose textbfDiffusion textbfPosterior textbfMCMC (textbfDPMC) to solve inverse problems with pretrained diffusion models.
Our algorithm outperforms DPS with less number of evaluations across nearly all tasks, and is competitive among existing approaches.
arXiv Detail & Related papers (2024-09-13T06:10:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.