Systematic Outliers in Large Language Models
- URL: http://arxiv.org/abs/2502.06415v1
- Date: Mon, 10 Feb 2025 12:54:17 GMT
- Title: Systematic Outliers in Large Language Models
- Authors: Yongqi An, Xu Zhao, Tao Yu, Ming Tang, Jinqiao Wang,
- Abstract summary: Outliers have been widely observed in Large Language Models (LLMs)
We provide a detailed analysis of the formation process, underlying causes, and functions of outliers in LLMs.
- Score: 41.2150163753952
- License:
- Abstract: Outliers have been widely observed in Large Language Models (LLMs), significantly impacting model performance and posing challenges for model compression. Understanding the functionality and formation mechanisms of these outliers is critically important. Existing works, however, largely focus on reducing the impact of outliers from an algorithmic perspective, lacking an in-depth investigation into their causes and roles. In this work, we provide a detailed analysis of the formation process, underlying causes, and functions of outliers in LLMs. We define and categorize three types of outliers-activation outliers, weight outliers, and attention outliers-and analyze their distributions across different dimensions, uncovering inherent connections between their occurrences and their ultimate influence on the attention mechanism. Based on these observations, we hypothesize and explore the mechanisms by which these outliers arise and function, demonstrating through theoretical derivations and experiments that they emerge due to the self-attention mechanism's softmax operation. These outliers act as implicit context-aware scaling factors within the attention mechanism. As these outliers stem from systematic influences, we term them systematic outliers. Our study not only enhances the understanding of Transformer-based LLMs but also shows that structurally eliminating outliers can accelerate convergence and improve model compression. The code is avilable at https://github.com/an-yongqi/systematic-outliers.
Related papers
- Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
We propose a theoretical approach based on Neural Tangent Kernels (NTKs) to investigate such mechanisms.
We reveal how these models leverage statistical features during gradient descent and how they are integrated into final decisions.
We find that while self-attention and CNN models may exhibit limitations in learning n-grams, multiplication-based models seem to excel in this area.
arXiv Detail & Related papers (2023-10-25T04:22:40Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.
We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Learning Causal Mechanisms through Orthogonal Neural Networks [2.77390041716769]
We investigate a problem of learning, in a fully unsupervised manner, the inverse of a set of independent mechanisms from distorted data points.
We propose an unsupervised method that discovers and disentangles a set of independent mechanisms from unlabeled data, and learns how to invert them.
arXiv Detail & Related papers (2023-06-05T13:11:33Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.