Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models
- URL: http://arxiv.org/abs/2407.18999v1
- Date: Fri, 26 Jul 2024 15:32:21 GMT
- Title: Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models
- Authors: Baao Xie, Qiuyu Chen, Yunnan Wang, Zequn Zhang, Xin Jin, Wenjun Zeng,
- Abstract summary: We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
- Score: 42.17166746027585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representation learning (DRL) aims to identify and decompose underlying factors behind observations, thus facilitating data perception and generation. However, current DRL approaches often rely on the unrealistic assumption that semantic factors are statistically independent. In reality, these factors may exhibit correlations, which off-the-shelf solutions have yet to properly address. To tackle this challenge, we introduce a bidirectional weighted graph-based framework, to learn factorized attributes and their interrelations within complex data. Specifically, we propose a $\beta$-VAE based module to extract factors as the initial nodes of the graph, and leverage the multimodal large language model (MLLM) to discover and rank latent correlations, thereby updating the weighted edges. By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement. Experiments demonstrate our method's superior performance in disentanglement and reconstruction. Furthermore, the model inherits enhanced interpretability and generalizability from MLLMs.
Related papers
- Disentangling Disentangled Representations: Towards Improved Latent Units via Diffusion Models [3.1923251959845214]
Disentangled representation learning (DRL) aims to break down observed data into core intrinsic factors for a profound understanding of the data.
Recently, there have been limited explorations of utilizing diffusion models (DMs) for unsupervised DRL.
We propose Dynamic Gaussian Anchoring to enforce attribute-separated latent units for more interpretable DRL.
We also propose Skip Dropout technique, which easily modifies the denoising U-Net to be more DRL-friendly.
arXiv Detail & Related papers (2024-10-31T11:05:09Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
arXiv Detail & Related papers (2023-08-08T16:04:42Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - CausalX: Causal Explanations and Block Multilinear Factor Analysis [3.087360758008569]
We propose a unified multilinear model of wholes and parts.
We introduce an incremental bottom-up computational alternative, the Incremental M-mode Block SVD.
The resulting object representation is an interpretable choice of intrinsic causal factor representations related to an object's hierarchy of wholes and parts.
arXiv Detail & Related papers (2021-02-25T13:49:01Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.