論文の概要: Robust Watermarks Leak: Channel-Aware Feature Extraction Enables Adversarial Watermark Manipulation
- arxiv url: http://arxiv.org/abs/2502.06418v1
- Date: Mon, 10 Feb 2025 12:55:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:11.820311
- Title: Robust Watermarks Leak: Channel-Aware Feature Extraction Enables Adversarial Watermark Manipulation
- Title(参考訳): ロバストな透かし:チャネルを意識した特徴抽出により、逆の透かし操作を可能にする
- Authors: Zhongjie Ba, Yitao Zhang, Peng Cheng, Bin Gong, Xinyu Zhang, Qinglong Wang, Kui Ren,
- Abstract要約: 本稿では,事前学習された視覚モデルを用いて,透かしパターンの漏洩を抽出する攻撃フレームワークを提案する。
大量のデータや検出器のアクセスを必要とする従来の作業とは異なり,本手法は1つの透かし画像による偽造と検出の両方を達成している。
現在の"ロバスト"な透かしは、歪み抵抗に対するセキュリティを犠牲にして、将来の透かし設計の洞察を与えます。
- 参考スコア(独自算出の注目度): 21.41643665626451
- License:
- Abstract: Watermarking plays a key role in the provenance and detection of AI-generated content. While existing methods prioritize robustness against real-world distortions (e.g., JPEG compression and noise addition), we reveal a fundamental tradeoff: such robust watermarks inherently improve the redundancy of detectable patterns encoded into images, creating exploitable information leakage. To leverage this, we propose an attack framework that extracts leakage of watermark patterns through multi-channel feature learning using a pre-trained vision model. Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image. Extensive experiments demonstrate that our method achieves a 60\% success rate gain in detection evasion and 51\% improvement in forgery accuracy compared to state-of-the-art methods while maintaining visual fidelity. Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
- Abstract(参考訳): ウォーターマーキングは、AI生成コンテンツの存在と検出において重要な役割を果たす。
既存の手法では、実世界の歪み(JPEG圧縮やノイズ付加など)に対して頑健さを優先するが、基本的なトレードオフが明らかになる: このような堅牢な透かしは、本質的に、画像にエンコードされた検出可能なパターンの冗長性を改善し、悪用可能な情報漏洩を生成する。
これを活用するために,事前学習された視覚モデルを用いた多チャンネル特徴学習により,透かしパターンの漏洩を抽出するアタックフレームワークを提案する。
大量のデータや検出器のアクセスを必要とする従来の作業とは異なり,本手法は1つの透かし画像による偽造と検出の両方を達成している。
広汎な実験により,本手法は検出回避における60倍の成功率向上と51倍の偽造精度向上を実現し,視覚的忠実度を維持しつつ,最先端の手法と比較した。
現在の"ロバスト"な透かしは、歪み抵抗に対するセキュリティを犠牲にして、将来の透かし設計の洞察を与えます。
関連論文リスト
- LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks [7.965986856780787]
本稿では,LampMarkを略して,新しい学習自由なランドマークとして紹介する。
まず、Deepfake操作の構造に敏感な特性を分析し、セキュアで機密性の高い変換パイプラインを考案する。
本稿では,保護対象画像に関する透かしを認識不能に埋め込み,抽出するエンド・ツー・エンドの透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-26T08:24:56Z) - Trigger-Based Fragile Model Watermarking for Image Transformation Networks [2.38776871944507]
脆弱な透かしでは、微妙な透かしが、改ざん時に透かしが壊れるように、物体に埋め込まれる。
画像変換・生成ネットワークのための新規なトリガ型フラクタモデル透かしシステムを提案する。
私たちのアプローチは、堅牢な透かしとは別として、さまざまなデータセットや攻撃に対して、モデルのソースと整合性を効果的に検証します。
論文 参考訳(メタデータ) (2024-09-28T19:34:55Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
既存の手法は、画質と透かしの堅牢性のジレンマに直面している。
画像品質の優れた透かしは通常、ぼやけやJPEG圧縮のような攻撃に対して弱い堅牢性を持つ。
本稿では,潜伏拡散空間内の透かしを注入し,検出する潜伏透かしを提案する。
論文 参考訳(メタデータ) (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - WAVES: Benchmarking the Robustness of Image Watermarks [67.955140223443]
WAVES(Watermark Analysis Via Enhanced Stress-testing)は、画像透かしの堅牢性を評価するためのベンチマークである。
我々は,検出タスクと識別タスクを統合し,多様なストレステストからなる標準化された評価プロトコルを確立する。
我々はWAVESを,ロバストな透かしの将来の開発のためのツールキットとして想定する。
論文 参考訳(メタデータ) (2024-01-16T18:58:36Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。