KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph Enrichment
- URL: http://arxiv.org/abs/2502.06472v1
- Date: Mon, 10 Feb 2025 13:51:36 GMT
- Title: KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph Enrichment
- Authors: Yuxing Lu, Jinzhuo Wang,
- Abstract summary: KARMA is a novel framework employing multi-agent large language models (LLMs) to automate knowledge enrichment through structured analysis of unstructured text.<n>Our approach employs nine collaborative agents, spanning entity discovery, relation extraction, schema alignment, and conflict resolution.<n>Experiments on 1,200 PubMed articles from three different domains demonstrate the effectiveness of KARMA in knowledge graph enrichment.
- Score: 1.688134675717698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maintaining comprehensive and up-to-date knowledge graphs (KGs) is critical for modern AI systems, but manual curation struggles to scale with the rapid growth of scientific literature. This paper presents KARMA, a novel framework employing multi-agent large language models (LLMs) to automate KG enrichment through structured analysis of unstructured text. Our approach employs nine collaborative agents, spanning entity discovery, relation extraction, schema alignment, and conflict resolution that iteratively parse documents, verify extracted knowledge, and integrate it into existing graph structures while adhering to domain-specific schema. Experiments on 1,200 PubMed articles from three different domains demonstrate the effectiveness of KARMA in knowledge graph enrichment, with the identification of up to 38,230 new entities while achieving 83.1\% LLM-verified correctness and reducing conflict edges by 18.6\% through multi-layer assessments.
Related papers
- RAKG:Document-level Retrieval Augmented Knowledge Graph Construction [10.013667560362565]
This paper focuses on the task of automatic document-level knowledge graph construction.
It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework.
arXiv Detail & Related papers (2025-04-14T02:47:23Z) - Talking to GDELT Through Knowledge Graphs [0.6461717749486492]
We study various Retrieval Augmented Regeneration (RAG) approaches to gain an understanding of the strengths and weaknesses of each approach in a question-answering analysis.
To retrieve information from the text corpus we implement a traditional vector store RAG as well as state-of-the-art large language model (LLM) based approaches.
arXiv Detail & Related papers (2025-03-10T17:48:10Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.
This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.
We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - Mixture of Knowledge Minigraph Agents for Literature Review Generation [22.80918934436901]
This paper proposes a novel framework, collaborative knowledge minigraph agents (CKMAs) to automate scholarly literature reviews.<n>A novel prompt-based algorithm, the knowledge minigraph construction agent (KMCA), is designed to identify relations between concepts from academic literature and automatically constructs knowledge minigraphs.<n>By leveraging the capabilities of large language models on constructed knowledge minigraphs, the multiple path summarization agent (MPSA) efficiently organizes concepts and relations from different viewpoints to generate literature review paragraphs.
arXiv Detail & Related papers (2024-11-09T12:06:40Z) - Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective [13.905336639352404]
This work introduces Graphusion, a zero-shot Knowledge Graph framework from free text.<n>It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities.<n>In Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge.
arXiv Detail & Related papers (2024-10-23T06:54:03Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution [48.86322922826514]
This paper defines a new task of Knowledge-aware Language Model Attribution (KaLMA)
First, we extend attribution source from unstructured texts to Knowledge Graph (KG), whose rich structures benefit both the attribution performance and working scenarios.
Second, we propose a new Conscious Incompetence" setting considering the incomplete knowledge repository.
Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment.
arXiv Detail & Related papers (2023-10-09T11:45:59Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.