論文の概要: Biomechanical Reconstruction with Confidence Intervals from Multiview Markerless Motion Capture
- arxiv url: http://arxiv.org/abs/2502.06486v1
- Date: Mon, 10 Feb 2025 14:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:36.643032
- Title: Biomechanical Reconstruction with Confidence Intervals from Multiview Markerless Motion Capture
- Title(参考訳): マルチビューマーカーレスモーションキャプチャーからの信頼区間を用いた生体力学的再構成
- Authors: R. James Cotton, Fabian Sinz,
- Abstract要約: 特定のカメラ構成を用いて分析した特定の個人から特定のキネマティック推定値に対する信頼区間を示す。
我々は、異なる生体力学モデルを用いて、軌道の最適化されたエンドツーエンドの暗黙の表現を用いて、これまでの研究を拡張した。
この後続確率は変動近似によって学習され、試行において各時点における個々の関節に対する信頼区間を推定する。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: Advances in multiview markerless motion capture (MMMC) promise high-quality movement analysis for clinical practice and research. While prior validation studies show MMMC performs well on average, they do not provide what is needed in clinical practice or for large-scale utilization of MMMC -- confidence intervals over specific kinematic estimates from a specific individual analyzed using a possibly unique camera configuration. We extend our previous work using an implicit representation of trajectories optimized end-to-end through a differentiable biomechanical model to learn the posterior probability distribution over pose given all the detected keypoints. This posterior probability is learned through a variational approximation and estimates confidence intervals for individual joints at each moment in a trial, showing confidence intervals generally within 10-15 mm of spatial error for virtual marker locations, consistent with our prior validation studies. Confidence intervals over joint angles are typically only a few degrees and widen for more distal joints. The posterior also models the correlation structure over joint angles, such as correlations between hip and pelvis angles. The confidence intervals estimated through this method allow us to identify times and trials where kinematic uncertainty is high.
- Abstract(参考訳): マルチビューマーカーレスモーションキャプチャ(MMMC)の進歩は、臨床および研究のための高品質な運動分析を約束する。
事前の検証研究では、MMMCは平均的に良好に機能することが示されたが、臨床実践や大規模なMMMCの利用に必要なものは提供されていない。
検出されたすべてのキーポイントが与えられたポーズよりも後続確率分布を学習するために、異なる生体力学モデルを用いて、軌道最適化された終端を暗黙的に表現することで、これまでの研究を拡張した。
この後続確率は、変動近似を用いて学習され、試行において各時点の個々の関節の信頼区間を推定し、通常仮想マーカー位置の空間誤差10~15mm以内の信頼区間を示す。
関節角度上の信頼区間は、通常数度しかなく、より遠位な関節に対して拡がっている。
後肢は、股関節角度と骨盤角度の相関などの関節角度上の相関構造もモデル化している。
本手法により推定される信頼区間は,運動の不確実性が高い時間と試行を識別することができる。
関連論文リスト
- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting [2.0168790328644697]
本稿では,ベースラインとフォローアップスキャンの時間的差を,差分重みブロックと呼ばれるユニークなアーキテクチャ的帰納バイアスによって明示的に取り込む新しい手法を提案する。
本研究は,2つのデータセットにまたがる最先端の縦・単点モデルと比較して,病変のセグメンテーションおよび病変検出において優れたスコアを得る。
論文 参考訳(メタデータ) (2024-09-20T11:30:54Z) - Ensembled Prediction Intervals for Causal Outcomes Under Hidden
Confounding [49.1865229301561]
本稿では,既存の因果感受性モデルを用いた部分同定手法を提案し,Caus-Modensがより厳密な結果区間を与えることを示す。
3つの異なるベンチマークのうち最後のものは、未知だが探究可能な基底真理を持つ観測実験にGPT-4を新たに使用することである。
論文 参考訳(メタデータ) (2023-06-15T21:42:40Z) - Strengths and Weaknesses of 3D Pose Estimation and Inertial Motion
Capture System for Movement Therapy [0.0]
3Dポーズ推定は、高速で非侵襲的で正確な動き分析の機会を提供する。
我々は,既存の慣性センサシステムMTw Awindaと比較して,最先端の3D位置推定手法であるMeTrabsの精度について検討した。
論文 参考訳(メタデータ) (2023-06-01T20:35:06Z) - DIR-AS: Decoupling Individual Identification and Temporal Reasoning for
Action Segmentation [84.78383981697377]
完全な教師付きアクションセグメンテーションは、高密度アノテーションによるフレームワイドアクション認識に作用し、しばしば過剰なセグメンテーションの問題に悩まされる。
本研究では, 時間的ピラミッド拡張と時間的ピラミッドプールを併用して, 効率的なマルチスケールアテンションを実現するため, 新たなローカル・グローバルアテンション機構を開発した。
GTEAでは82.8%(+2.6%)、Breakfastでは74.7%(+1.2%)の精度を実現し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2023-04-04T20:27:18Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
現代のディープニューラルネットワークはキャリブレーションが不十分で、信頼性と信頼性を損なう。
本稿では,クラスラベル間のセマンティック・コンフューザビリティと階層的類似性を利用したドメイン認識モデルキャリブレーション手法であるDOMINOを提案する。
その結果,DOMINOを校正したディープニューラルネットワークは,頭部画像分割における非校正モデルや最先端形態計測法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-13T15:31:52Z) - Learnable Patchmatch and Self-Teaching for Multi-Frame Depth Estimation in Monocular Endoscopy [16.233423010425355]
教師なしマルチフレーム単眼深度推定モデルを提案する。
提案モデルでは、学習可能なパッチマッチモジュールを統合し、低次および均質なテクスチャを持つ領域における識別能力を適応的に向上させる。
自己学習パラダイムの副産物として,テスト時により多くのフレームが入力されたときの深度予測を改善することができる。
論文 参考訳(メタデータ) (2022-05-30T12:11:03Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - Multi-view Integration Learning for Irregularly-sampled Clinical Time
Series [1.9639092030562577]
不規則な時系列データからの多視点機能統合学習をインピーダンスフリーで自己保持機構で提案する。
我々は,観測値の関連性,指標の欠如,連続観測間の時間間隔を同時に学習する。
我々は,マルチビュー観察における相互関係の表現学習を促進するために,注意に基づくデコーダを欠落値インプタとして構築する。
論文 参考訳(メタデータ) (2021-01-25T10:02:50Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
2つの画像に関連する密度の高い流れ場と、堅牢な画素方向の信頼度マップの推定を目指しています。
フロー予測とその不確実性を共同で学習するフレキシブルな確率的アプローチを開発する。
本手法は,幾何学的マッチングと光フローデータセットに挑戦する最新の結果を得る。
論文 参考訳(メタデータ) (2021-01-05T18:54:11Z) - Tolerance and Prediction Intervals for Non-normal Models [0.0]
予測間隔は、繰り返しサンプリングにおいてランダムプロセスから将来の観察をカバーする。
寛容間隔は繰り返しサンプリングにおいて集団パーセンタイルをカバーし、しばしば中心的な量に基づいている。
論文 参考訳(メタデータ) (2020-11-23T17:48:09Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。