Biomechanical Reconstruction with Confidence Intervals from Multiview Markerless Motion Capture
- URL: http://arxiv.org/abs/2502.06486v1
- Date: Mon, 10 Feb 2025 14:04:57 GMT
- Title: Biomechanical Reconstruction with Confidence Intervals from Multiview Markerless Motion Capture
- Authors: R. James Cotton, Fabian Sinz,
- Abstract summary: We show confidence intervals over specific kinematic estimates from a specific individual analyzed using a possibly unique camera configuration.
We extend our previous work using an implicit representation of trajectories optimized end-to-end through a differentiable biomechanical model.
This posterior probability is learned through a variational approximation and estimates confidence intervals for individual joints at each moment in a trial.
- Score: 2.07180164747172
- License:
- Abstract: Advances in multiview markerless motion capture (MMMC) promise high-quality movement analysis for clinical practice and research. While prior validation studies show MMMC performs well on average, they do not provide what is needed in clinical practice or for large-scale utilization of MMMC -- confidence intervals over specific kinematic estimates from a specific individual analyzed using a possibly unique camera configuration. We extend our previous work using an implicit representation of trajectories optimized end-to-end through a differentiable biomechanical model to learn the posterior probability distribution over pose given all the detected keypoints. This posterior probability is learned through a variational approximation and estimates confidence intervals for individual joints at each moment in a trial, showing confidence intervals generally within 10-15 mm of spatial error for virtual marker locations, consistent with our prior validation studies. Confidence intervals over joint angles are typically only a few degrees and widen for more distal joints. The posterior also models the correlation structure over joint angles, such as correlations between hip and pelvis angles. The confidence intervals estimated through this method allow us to identify times and trials where kinematic uncertainty is high.
Related papers
- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting [2.0168790328644697]
We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block.
We achieve superior scores in lesion segmentation as well as lesion detection as compared to state-of-the-art longitudinal and single timepoint models across two datasets.
arXiv Detail & Related papers (2024-09-20T11:30:54Z) - Ensembled Prediction Intervals for Causal Outcomes Under Hidden
Confounding [49.1865229301561]
We present a simple approach to partial identification using existing causal sensitivity models and show empirically that Caus-Modens gives tighter outcome intervals.
The last of our three diverse benchmarks is a novel usage of GPT-4 for observational experiments with unknown but probeable ground truth.
arXiv Detail & Related papers (2023-06-15T21:42:40Z) - Strengths and Weaknesses of 3D Pose Estimation and Inertial Motion
Capture System for Movement Therapy [0.0]
3D pose estimation offers the opportunity for fast, non-invasive, and accurate motion analysis.
We investigate the accuracy of the state-of-the-art 3D position estimation approach MeTrabs, compared to the established inertial sensor system MTw Awinda.
arXiv Detail & Related papers (2023-06-01T20:35:06Z) - DIR-AS: Decoupling Individual Identification and Temporal Reasoning for
Action Segmentation [84.78383981697377]
Fully supervised action segmentation works on frame-wise action recognition with dense annotations and often suffers from the over-segmentation issue.
We develop a novel local-global attention mechanism with temporal pyramid dilation and temporal pyramid pooling for efficient multi-scale attention.
We achieve state-of-the-art accuracy, eg, 82.8% (+2.6%) on GTEA and 74.7% (+1.2%) on Breakfast, which demonstrates the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-04-04T20:27:18Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
Modern deep neural networks are poorly calibrated, compromising trustworthiness and reliability.
We propose DOMINO, a domain-aware model calibration method that leverages the semantic confusability and hierarchical similarity between class labels.
Our results show that DOMINO-calibrated deep neural networks outperform non-calibrated models and state-of-the-art morphometric methods in head image segmentation.
arXiv Detail & Related papers (2022-09-13T15:31:52Z) - Learnable Patchmatch and Self-Teaching for Multi-Frame Depth Estimation in Monocular Endoscopy [16.233423010425355]
We propose a novel unsupervised multi-frame monocular depth estimation model.
The proposed model integrates a learnable patchmatch module to adaptively increase the discriminative ability in regions with low and homogeneous textures.
As a byproduct of the self-teaching paradigm, the proposed model is able to improve the depth predictions when more frames are input at test time.
arXiv Detail & Related papers (2022-05-30T12:11:03Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Multi-view Integration Learning for Irregularly-sampled Clinical Time
Series [1.9639092030562577]
We propose a multi-view features integration learning from irregular time series data by self-attention mechanism in an imputation-free manner.
We explicitly learn the relationships among the observed values, missing indicators, and time interval between the consecutive observations, simultaneously.
We build an attention-based decoder as a missing value imputer that helps empower the representation learning of the inter-relations among multi-view observations.
arXiv Detail & Related papers (2021-01-25T10:02:50Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Tolerance and Prediction Intervals for Non-normal Models [0.0]
A prediction interval covers a future observation from a random process in repeated sampling.
A tolerance interval covers a population percentile in repeated sampling and is often based on a pivotal quantity.
arXiv Detail & Related papers (2020-11-23T17:48:09Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.