Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting
- URL: http://arxiv.org/abs/2409.13416v1
- Date: Fri, 20 Sep 2024 11:30:54 GMT
- Title: Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting
- Authors: Maximilian Rokuss, Yannick Kirchhoff, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Stefan Denner, Fabian Isensee, Philipp Vollmuth, Jens Kleesiek, Klaus Maier-Hein,
- Abstract summary: We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block.
We achieve superior scores in lesion segmentation as well as lesion detection as compared to state-of-the-art longitudinal and single timepoint models across two datasets.
- Score: 2.0168790328644697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy. Although changes across time are taken into account when assessing images in clinical practice, most existing deep learning methods treat scans from different timepoints separately. Among studies utilizing longitudinal images, a simple channel-wise concatenation is the primary albeit suboptimal method employed to integrate timepoints. We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block. It merges features from two timepoints, emphasizing changes between scans. We achieve superior scores in lesion segmentation (Dice Score, Hausdorff distance) as well as lesion detection (lesion-level $F_1$ score) as compared to state-of-the-art longitudinal and single timepoint models across two datasets. Our code is made publicly available at www.github.com/MIC-DKFZ/Longitudinal-Difference-Weighting.
Related papers
- CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Time-distance vision transformers in lung cancer diagnosis from
longitudinal computed tomography [4.924544172166966]
longitudinal medical imaging presents the unique challenge of sparse, irregular time intervals in data acquisition.
We propose two interpretations of a time-distance vision transformer (ViT) by using vector embeddings of continuous time and a temporal emphasis model to scale self-attention weights.
This work represents the first self-attention-based framework for classifying longitudinal medical images.
arXiv Detail & Related papers (2022-09-04T19:08:44Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Interactive Segmentation for COVID-19 Infection Quantification on
Longitudinal CT scans [40.721386089781895]
Consistent segmentation of COVID-19 patient's CT scans across multiple time points is essential to assess disease progression and response to therapy accurately.
Existing automatic and interactive segmentation models for medical images only use data from a single time point (static)
We propose a new single network model for interactive segmentation that fully utilizes all available past information to refine the segmentation of follow-up scans.
arXiv Detail & Related papers (2021-10-03T08:06:38Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - Spatio-temporal Learning from Longitudinal Data for Multiple Sclerosis
Lesion Segmentation [42.25397672438179]
We show efficacy of our method on a clinical dataset comprised of 70 patients.
We improve the result of current state-of-the-art by 2.6% in terms of overall score.
arXiv Detail & Related papers (2020-04-07T19:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.