論文の概要: Model-Based Offline Reinforcement Learning with Reliability-Guaranteed Sequence Modeling
- arxiv url: http://arxiv.org/abs/2502.06491v1
- Date: Mon, 10 Feb 2025 14:08:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:24.693528
- Title: Model-Based Offline Reinforcement Learning with Reliability-Guaranteed Sequence Modeling
- Title(参考訳): 信頼性保証シーケンスモデリングを用いたモデルに基づくオフライン強化学習
- Authors: Shenghong He,
- Abstract要約: モデルベースオフライン強化学習(MORL)は、既存のデータセットから派生した動的モデルを利用してポリシーを学習することを目的としている。
信頼性の低いトラジェクトリを除去できる新しいMORLアルゴリズム textbfReliability-guaranteed textbfTransformer (RT) を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Model-based offline reinforcement learning (MORL) aims to learn a policy by exploiting a dynamics model derived from an existing dataset. Applying conservative quantification to the dynamics model, most existing works on MORL generate trajectories that approximate the real data distribution to facilitate policy learning by using current information (e.g., the state and action at time step $t$). However, these works neglect the impact of historical information on environmental dynamics, leading to the generation of unreliable trajectories that may not align with the real data distribution. In this paper, we propose a new MORL algorithm \textbf{R}eliability-guaranteed \textbf{T}ransformer (RT), which can eliminate unreliable trajectories by calculating the cumulative reliability of the generated trajectory (i.e., using a weighted variational distance away from the real data). Moreover, by sampling candidate actions with high rewards, RT can efficiently generate high-return trajectories from the existing offline data. We theoretically prove the performance guarantees of RT in policy learning, and empirically demonstrate its effectiveness against state-of-the-art model-based methods on several benchmark tasks.
- Abstract(参考訳): モデルベースオフライン強化学習(MORL)は、既存のデータセットから派生した動的モデルを利用してポリシーを学習することを目的としている。
ダイナミックスモデルに保守的な定量化を適用することで、MORLに関する既存のほとんどの研究は、現在の情報(例えば、時点における状態と動作)を使用してポリシー学習を容易にするために、実際のデータ分布を近似する軌跡を生成する。
しかし、これらの研究は、歴史的情報が環境力学に与える影響を無視し、実際のデータ分布と一致しない信頼できない軌跡を発生させる。
本稿では,生成した軌道の累積信頼性(すなわち実データから離れた重み付き変動距離)を計算することにより,信頼できない軌道を除去できる新しい MORL アルゴリズムである \textbf{R}eliability-guaranteed \textbf{T}ransformer (RT) を提案する。
さらに、高い報酬で候補行動のサンプリングを行うことで、RTは既存のオフラインデータから高リターントラジェクトリを効率的に生成することができる。
政策学習におけるRTの性能保証を理論的に証明し、いくつかのベンチマークタスクにおける最先端のモデルベース手法に対する効果を実証的に実証する。
関連論文リスト
- SeMOPO: Learning High-quality Model and Policy from Low-quality Offline Visual Datasets [32.496818080222646]
モデルに基づくオフライン強化学習のための新しい手法を提案する。
モデルの不確かさとSeMOPOの性能バウンダリに関する理論的保証を提供する。
実験結果から,本手法はベースライン法を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-06-13T15:16:38Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Model-based trajectory stitching for improved behavioural cloning and
its applications [7.462336024223669]
トラジェクティブ・スティッチング(TS)は、元のデータで切断された状態のペアを縫い合わせることで、新しいトラジェクトリを生成する。
古い軌道を新しい軌道に置き換える反復的プロセスが、基礎となる行動方針を漸進的に改善することを示した。
論文 参考訳(メタデータ) (2022-12-08T14:18:04Z) - Model Generation with Provable Coverability for Offline Reinforcement
Learning [14.333861814143718]
動的対応ポリシーによるオフライン最適化は、ポリシー学習とアウト・オブ・ディストリビューションの一般化の新しい視点を提供する。
しかし、オフライン環境での制限のため、学習したモデルは実際のダイナミクスを十分に模倣することができず、信頼性の高いアウト・オブ・ディストリビューション探索をサポートできなかった。
本研究では,実力学のカバレッジを最適化するモデルを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-01T08:34:09Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Overcoming Model Bias for Robust Offline Deep Reinforcement Learning [3.1325640909772403]
MOOSEは、ポリシーをデータのサポート内に保持することで、低モデルバイアスを保証するアルゴリズムである。
我々はMOOSEと産業ベンチマークのBRAC, BEAR, BCQ, および MuJoCo の連続制御タスクを比較した。
論文 参考訳(メタデータ) (2020-08-12T19:08:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。