A Survey on Video Analytics in Cloud-Edge-Terminal Collaborative Systems
- URL: http://arxiv.org/abs/2502.06581v2
- Date: Wed, 12 Feb 2025 13:25:22 GMT
- Title: A Survey on Video Analytics in Cloud-Edge-Terminal Collaborative Systems
- Authors: Linxiao Gong, Hao Yang, Gaoyun Fang, Bobo Ju, Juncen Guo, Xiaoguang Zhu, Yan Wang, Xiping Hu, Peng Sun, Azzedine Boukerche,
- Abstract summary: Cloud-edge-terminal collaborative (CETC) systems enable efficient video processing, real-time inference, and privacy-preserving analysis.
In this survey, we first analyze fundamental architectural components, including hierarchical, distributed, and hybrid frameworks.
Our investigation also covers hybrid video analytics incorporating adaptive task offloading and resource-aware scheduling techniques.
- Score: 27.223679253922413
- License:
- Abstract: The explosive growth of video data has driven the development of distributed video analytics in cloud-edge-terminal collaborative (CETC) systems, enabling efficient video processing, real-time inference, and privacy-preserving analysis. Among multiple advantages, CETC systems can distribute video processing tasks and enable adaptive analytics across cloud, edge, and terminal devices, leading to breakthroughs in video surveillance, autonomous driving, and smart cities. In this survey, we first analyze fundamental architectural components, including hierarchical, distributed, and hybrid frameworks, alongside edge computing platforms and resource management mechanisms. Building upon these foundations, edge-centric approaches emphasize on-device processing, edge-assisted offloading, and edge intelligence, while cloud-centric methods leverage powerful computational capabilities for complex video understanding and model training. Our investigation also covers hybrid video analytics incorporating adaptive task offloading and resource-aware scheduling techniques that optimize performance across the entire system. Beyond conventional approaches, recent advances in large language models and multimodal integration reveal both opportunities and challenges in platform scalability, data protection, and system reliability. Future directions also encompass explainable systems, efficient processing mechanisms, and advanced video analytics, offering valuable insights for researchers and practitioners in this dynamic field.
Related papers
- Vision-Language Models for Edge Networks: A Comprehensive Survey [32.05172973290599]
Vision Large Language Models (VLMs) combine visual understanding with natural language processing, enabling tasks like image captioning, visual question answering, and video analysis.
VLMs show impressive capabilities across domains such as autonomous vehicles, smart surveillance, and healthcare.
Their deployment on resource-constrained edge devices remains challenging due to processing power, memory, and energy limitations.
arXiv Detail & Related papers (2025-02-11T14:04:43Z) - Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies [14.115655986504411]
5G and edge computing hardware has brought about a significant shift in artificial intelligence.
deploying state-of-the-art AI models on resource-constrained edge devices faces significant challenges.
This paper presents an optimization triad for efficient and reliable edge AI deployment.
arXiv Detail & Related papers (2025-01-04T06:17:48Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Edge Computing Enabled Real-Time Video Analysis via Adaptive
Spatial-Temporal Semantic Filtering [18.55091203660391]
This paper proposes a novel edge computing enabled real-time video analysis system for intelligent visual devices.
The proposed system consists of a tracking-assisted object detection module (TAODM) and a region of interesting module (ROIM)
TAODM adaptively determines the offloading decision to process each video frame locally with a tracking algorithm or to offload it to the edge server inferred by an object detection model.
arXiv Detail & Related papers (2024-02-29T07:42:03Z) - Task-Oriented Communication for Edge Video Analytics [11.03999024164301]
This paper proposes a task-oriented communication framework for edge video analytics.
Multiple devices collect visual sensory data and transmit the informative features to an edge server for processing.
We show that the proposed framework effectively encodes task-relevant information of video data and achieves a better rate-performance tradeoff than existing methods.
arXiv Detail & Related papers (2022-11-25T12:09:12Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Reproducible Performance Optimization of Complex Applications on the
Edge-to-Cloud Continuum [55.6313942302582]
We propose a methodology to support the optimization of real-life applications on the Edge-to-Cloud Continuum.
Our approach relies on a rigorous analysis of possible configurations in a controlled testbed environment to understand their behaviour.
Our methodology can be generalized to other applications in the Edge-to-Cloud Continuum.
arXiv Detail & Related papers (2021-08-04T07:35:14Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.