Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging
- URL: http://arxiv.org/abs/2502.06591v1
- Date: Mon, 10 Feb 2025 15:55:08 GMT
- Title: Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging
- Authors: Ron Shapira Weber, Oren Freifeld,
- Abstract summary: In time-series analysis, nonlinear temporal misalignment remains a pivotal challenge that forestalls even simple averaging.
DTAN predicts and applies diffeomorphic transformations in an input-dependent manner, thus facilitating the joint alignment (JA) and averaging of time-series ensembles.
We extend our framework to incorporate multi-task learning (MT-DTAN), enabling simultaneous timeseries alignment and classification.
- Score: 8.14908648005543
- License:
- Abstract: In time-series analysis, nonlinear temporal misalignment remains a pivotal challenge that forestalls even simple averaging. Since its introduction, the Diffeomorphic Temporal Alignment Net (DTAN), which we first introduced (Weber et al., 2019) and further developed in (Weber & Freifeld, 2023), has proven itself as an effective solution for this problem (these conference papers are earlier partial versions of the current manuscript). DTAN predicts and applies diffeomorphic transformations in an input-dependent manner, thus facilitating the joint alignment (JA) and averaging of time-series ensembles in an unsupervised or a weakly-supervised manner. The inherent challenges of the weakly/unsupervised setting, particularly the risk of trivial solutions through excessive signal distortion, are mitigated using either one of two distinct strategies: 1) a regularization term for warps; 2) using the Inverse Consistency Averaging Error (ICAE). The latter is a novel, regularization-free approach which also facilitates the JA of variable-length signals. We also further extend our framework to incorporate multi-task learning (MT-DTAN), enabling simultaneous time-series alignment and classification. Additionally, we conduct a comprehensive evaluation of different backbone architectures, demonstrating their efficacy in time-series alignment tasks. Finally, we showcase the utility of our approach in enabling Principal Component Analysis (PCA) for misaligned time-series data. Extensive experiments across 128 UCR datasets validate the superiority of our approach over contemporary averaging methods, including both traditional and learning-based approaches, marking a significant advancement in the field of time-series analysis.
Related papers
- General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.
A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.
An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions [3.489870763747715]
Real-world time series often exhibit irregularities such as misaligned timestamps, missing entries, and variable sampling rates.
Existing approaches often rely on imputation, which can introduce biases.
We present WaveGNN, a novel framework designed to embed irregularly sampled time series data for accurate predictions.
arXiv Detail & Related papers (2024-12-14T00:03:44Z) - TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation [47.58016750718323]
We propose TimeDART, a novel self-supervised time series pre-training framework.
TimeDART unifies two powerful generative paradigms to learn more transferable representations.
We conduct extensive experiments on public datasets for time series forecasting and classification.
arXiv Detail & Related papers (2024-10-08T06:08:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Match-And-Deform: Time Series Domain Adaptation through Optimal
Transport and Temporal Alignment [10.89671409446191]
We introduce the Match-And-Deform (MAD) approach that aims at finding correspondences between the source and target time series.
When embedded into a deep neural network, MAD helps learning new representations of time series that both align the domains.
Empirical studies on benchmark datasets and remote sensing data demonstrate that MAD makes meaningful sample-to-sample pairing and time shift estimation.
arXiv Detail & Related papers (2023-08-24T09:57:11Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Mlinear: Rethink the Linear Model for Time-series Forecasting [9.841293660201261]
Mlinear is a simple yet effective method based mainly on linear layers.
We introduce a new loss function that significantly outperforms the widely used mean squared error (MSE) on multiple datasets.
Our method significantly outperforms PatchTST with a ratio of 21:3 at 336 sequence length input and 29:10 at 512 sequence length input.
arXiv Detail & Related papers (2023-05-08T15:54:18Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
Time series anomaly detection (TSAD) plays a vital role in many industrial applications.
Contrastive learning has gained momentum in the time series domain for its prowess in extracting meaningful representations from unlabeled data.
In this study, we propose a novel approach, CNT, that incorporates a window-based contrastive learning strategy fortified with learnable transformations.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - Unsupervised Time-Series Representation Learning with Iterative Bilinear
Temporal-Spectral Fusion [6.154427471704388]
We propose a unified framework, namely Bilinear Temporal-Spectral Fusion (BTSF)
Specifically, we utilize the instance-level augmentation with a simple dropout on the entire time series for maximally capturing long-term dependencies.
We devise a novel iterative bilinear temporal-spectral fusion to explicitly encode the affinities of abundant time-frequency pairs.
arXiv Detail & Related papers (2022-02-08T14:04:08Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Bottom-Up Temporal Action Localization with Mutual Regularization [107.39785866001868]
State-of-the-art solutions for TAL involve evaluating the frame-level probabilities of three action-indicating phases.
We introduce two regularization terms to mutually regularize the learning procedure.
Experiments are performed on two popular TAL datasets, THUMOS14 and ActivityNet1.3.
arXiv Detail & Related papers (2020-02-18T03:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.