Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2304.07898v2
- Date: Sat, 25 Jan 2025 01:30:47 GMT
- Title: Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection
- Authors: Katrina Chen, Mingbin Feng, Tony S. Wirjanto,
- Abstract summary: Time series anomaly detection (TSAD) plays a vital role in many industrial applications.<n>Contrastive learning has gained momentum in the time series domain for its prowess in extracting meaningful representations from unlabeled data.<n>In this study, we propose a novel approach, CNT, that incorporates a window-based contrastive learning strategy fortified with learnable transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomaly detection (TSAD) plays a vital role in many industrial applications. While contrastive learning has gained momentum in the time series domain for its prowess in extracting meaningful representations from unlabeled data, its straightforward application to anomaly detection is not without hurdles. Firstly, contrastive learning typically requires negative sampling to avoid the representation collapse issue, where the encoder converges to a constant solution. However, drawing from the same dataset for dissimilar samples is ill-suited for TSAD as most samples are ``normal'' in the training dataset. Secondly, conventional contrastive learning focuses on instance discrimination, which may overlook anomalies that are detectable when compared to their temporal context. In this study, we propose a novel approach, CNT, that incorporates a window-based contrastive learning strategy fortified with learnable transformations. This dual configuration focuses on capturing temporal anomalies in local regions while simultaneously mitigating the representation collapse issue. Our theoretical analysis validates the effectiveness of CNT in circumventing constant encoder solutions. Through extensive experiments on diverse real-world industrial datasets, we show the superiority of our framework by outperforming various baselines and model variants.
Related papers
- DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection [12.658792855097198]
Time series anomaly holds notable importance for risk identification and fault detection across diverse application domains.
Unsupervised learning methods have become popular because they have no requirement for labels.
We propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD)
arXiv Detail & Related papers (2025-04-19T06:35:06Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
arXiv Detail & Related papers (2024-05-24T20:27:45Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - DCdetector: Dual Attention Contrastive Representation Learning for Time
Series Anomaly Detection [26.042898544127503]
Time series anomaly detection is critical for a wide range of applications.
It aims to identify deviant samples from the normal sample distribution in time series.
We propose DCdetector, a multi-scale dual attention contrastive representation learning model.
arXiv Detail & Related papers (2023-06-17T13:40:15Z) - Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection [4.873362301533825]
We propose a Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection.
Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task.
arXiv Detail & Related papers (2022-12-05T14:29:16Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
We introduce Neural Contextual Anomaly Detection (NCAD), a framework for anomaly detection on time series.
NCAD scales seamlessly from the unsupervised to supervised setting.
We demonstrate empirically on standard benchmark datasets that our approach obtains a state-of-the-art performance.
arXiv Detail & Related papers (2021-07-16T04:33:53Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years.
We propose a background-agnostic framework that learns from training videos containing only normal events.
arXiv Detail & Related papers (2020-08-27T18:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.