Koopman-Equivariant Gaussian Processes
- URL: http://arxiv.org/abs/2502.06645v1
- Date: Mon, 10 Feb 2025 16:35:08 GMT
- Title: Koopman-Equivariant Gaussian Processes
- Authors: Petar Bevanda, Max Beier, Armin Lederer, Alexandre Capone, Stefan Sosnowski, Sandra Hirche,
- Abstract summary: We propose a family of Gaussian processes (GP) for dynamical systems with linear time-invariant responses.
This linearity allows us to tractably quantify forecasting and representational uncertainty.
Experiments demonstrate on-par and often better forecasting performance compared to kernel-based methods for learning dynamical systems.
- Score: 39.34668284375732
- License:
- Abstract: Credible forecasting and representation learning of dynamical systems are of ever-increasing importance for reliable decision-making. To that end, we propose a family of Gaussian processes (GP) for dynamical systems with linear time-invariant responses, which are nonlinear only in initial conditions. This linearity allows us to tractably quantify forecasting and representational uncertainty, simultaneously alleviating the challenge of computing the distribution of trajectories from a GP-based dynamical system and enabling a new probabilistic treatment of learning Koopman operator representations. Using a trajectory-based equivariance -- which we refer to as \textit{Koopman equivariance} -- we obtain a GP model with enhanced generalization capabilities. To allow for large-scale regression, we equip our framework with variational inference based on suitable inducing points. Experiments demonstrate on-par and often better forecasting performance compared to kernel-based methods for learning dynamical systems.
Related papers
- dynoGP: Deep Gaussian Processes for dynamic system identification [0.7692572272935511]
We present a novel approach to system identification for dynamical systems based on a specific class of Gaussian Deep Processes (Deep GPs)
Our approach combines the strengths of data-driven methods, such as those based on neural network architectures, with the ability to output a probability distribution.
Using both simulated and real-world data, we demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2025-02-08T15:57:59Z) - Koopman Theory-Inspired Method for Learning Time Advancement Operators in Unstable Flame Front Evolution [0.2812395851874055]
This study introduces Koopman-inspired Fourier Neural Operators (kFNO) and Convolutional Neural Networks (kCNN) to learn solution advancement operators for flame front instabilities.
By transforming data into a high-dimensional latent space, these models achieve more accurate multi-step predictions compared to traditional methods.
arXiv Detail & Related papers (2024-12-11T14:47:19Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - Koopman Kernel Regression [6.116741319526748]
We show that Koopman operator theory offers a beneficial paradigm for characterizing forecasts via linear time-invariant (LTI) ODEs.
We derive a universal Koopman-invariant kernel reproducing Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems.
Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors.
arXiv Detail & Related papers (2023-05-25T16:22:22Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.