Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems
- URL: http://arxiv.org/abs/2507.07222v1
- Date: Wed, 09 Jul 2025 18:55:48 GMT
- Title: Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems
- Authors: Minchan Jeong, J. Jon Ryu, Se-Young Yun, Gregory W. Wornell,
- Abstract summary: The Koopman operator provides a principled framework for analyzing nonlinear dynamical systems.<n>VAMPnet and DPNet have been proposed to learn the leading singular subspaces of the Koopman operator.<n>We propose a scalable and conceptually simple method for learning the top-k singular functions of the Koopman operator.
- Score: 35.207148596300684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Koopman operator provides a principled framework for analyzing nonlinear dynamical systems through linear operator theory. Recent advances in dynamic mode decomposition (DMD) have shown that trajectory data can be used to identify dominant modes of a system in a data-driven manner. Building on this idea, deep learning methods such as VAMPnet and DPNet have been proposed to learn the leading singular subspaces of the Koopman operator. However, these methods require backpropagation through potentially numerically unstable operations on empirical second moment matrices, such as singular value decomposition and matrix inversion, during objective computation, which can introduce biased gradient estimates and hinder scalability to large systems. In this work, we propose a scalable and conceptually simple method for learning the top-k singular functions of the Koopman operator for stochastic dynamical systems based on the idea of low-rank approximation. Our approach eliminates the need for unstable linear algebraic operations and integrates easily into modern deep learning pipelines. Empirical results demonstrate that the learned singular subspaces are both reliable and effective for downstream tasks such as eigen-analysis and multi-step prediction.
Related papers
- A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
Recent work bycitetzou 2021benign provides sharp rates for SGD optimization in linear regression using constant learning rate.<n>We provide a simplified analysis recovering the same bias and variance bounds provided incitepzou 2021benign based on simple linear algebra tools.<n>We believe our work makes the analysis of gradient descent on linear regression very accessible and will be helpful in further analyzing mini-batching and learning rate scheduling.
arXiv Detail & Related papers (2025-06-18T15:10:38Z) - Learning dynamically inspired invariant subspaces for Koopman and transfer operator approximation [0.0]
Transfer and Koopman operator methods offer a framework for representing complex, nonlinear dynamical systems via linear transformations.<n>We tackle this issue through the lens of general operator and representational learning, in which we approximate these linear operators using efficient finite-dimensional representations.<n>Specifically, we machine-learn orthonormal, locally supported basis functions that are dynamically tailored to the system.
arXiv Detail & Related papers (2025-05-08T09:32:39Z) - Koopman-Equivariant Gaussian Processes [39.34668284375732]
We propose a family of Gaussian processes (GP) for dynamical systems with linear time-invariant responses.<n>This linearity allows us to tractably quantify forecasting and representational uncertainty.<n>Experiments demonstrate on-par and often better forecasting performance compared to kernel-based methods for learning dynamical systems.
arXiv Detail & Related papers (2025-02-10T16:35:08Z) - Nonparametric Sparse Online Learning of the Koopman Operator [11.710740395697128]
The Koopman operator provides a powerful framework for representing the dynamics of general nonlinear dynamical systems.<n>Data-driven techniques to learn the Koopman operator typically assume that the chosen function space is closed under system dynamics.<n>We present an operator approximation algorithm to learn the Koopman operator iteratively with control over the complexity of the representation.
arXiv Detail & Related papers (2025-01-27T20:48:10Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Estimating Koopman operators with sketching to provably learn large
scale dynamical systems [37.18243295790146]
The theory of Koopman operators allows to deploy non-parametric machine learning algorithms to predict and analyze complex dynamical systems.
We boost the efficiency of different kernel-based Koopman operator estimators using random projections.
We establish non error bounds giving a sharp characterization of the trade-offs between statistical learning rates and computational efficiency.
arXiv Detail & Related papers (2023-06-07T15:30:03Z) - Koopman Kernel Regression [6.116741319526748]
We show that Koopman operator theory offers a beneficial paradigm for characterizing forecasts via linear time-invariant (LTI) ODEs.
We derive a universal Koopman-invariant kernel reproducing Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems.
Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors.
arXiv Detail & Related papers (2023-05-25T16:22:22Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.