Covariates-Adjusted Mixed-Membership Estimation: A Novel Network Model with Optimal Guarantees
- URL: http://arxiv.org/abs/2502.06671v1
- Date: Mon, 10 Feb 2025 16:56:00 GMT
- Title: Covariates-Adjusted Mixed-Membership Estimation: A Novel Network Model with Optimal Guarantees
- Authors: Jianqing Fan, Jiawei Ge, Jikai Hou,
- Abstract summary: This paper addresses the problem of estimation in networks, where the goal is to efficiently estimate the latent mixed-membership structure from the network.
We propose a novel model that incorporates both information, and similarities to the node co-membership model.
We show that our approach achieves optimal accuracy for both the similarity matrix and the Frobenius norm entry loss.
- Score: 3.6936359356095454
- License:
- Abstract: This paper addresses the problem of mixed-membership estimation in networks, where the goal is to efficiently estimate the latent mixed-membership structure from the observed network. Recognizing the widespread availability and valuable information carried by node covariates, we propose a novel network model that incorporates both community information, as represented by the Degree-Corrected Mixed Membership (DCMM) model, and node covariate similarities to determine connections. We investigate the regularized maximum likelihood estimation (MLE) for this model and demonstrate that our approach achieves optimal estimation accuracy for both the similarity matrix and the mixed-membership, in terms of both the Frobenius norm and the entrywise loss. Since directly analyzing the original convex optimization problem is intractable, we employ nonconvex optimization to facilitate the analysis. A key contribution of our work is identifying a crucial assumption that bridges the gap between convex and nonconvex solutions, enabling the transfer of statistical guarantees from the nonconvex approach to its convex counterpart. Importantly, our analysis extends beyond the MLE loss and the mean squared error (MSE) used in matrix completion problems, generalizing to all the convex loss functions. Consequently, our analysis techniques extend to a broader set of applications, including ranking problems based on pairwise comparisons. Finally, simulation experiments validate our theoretical findings, and real-world data analyses confirm the practical relevance of our model.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Statistical ranking with dynamic covariates [6.729750785106628]
We introduce an efficient alternating algorithm to compute the likelihood estimator (MLE)
A comprehensive numerical study is conducted to corroborate our theoretical findings and demonstrate the application of the proposed model to real-world datasets, including horse racing and tennis competitions.
arXiv Detail & Related papers (2024-06-24T10:26:05Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach
to Highly-Accurate Representation of Undirected Weighted Networks [2.1797442801107056]
Undirected Weighted Network (UWN) is commonly found in big data-related applications.
Existing models fail in either modeling its intrinsic symmetry or low-data density.
Proximal Symmetric Nonnegative Latent-factor-analysis model is proposed.
arXiv Detail & Related papers (2023-06-06T13:03:24Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.