Incentivizing Desirable Effort Profiles in Strategic Classification: The Role of Causality and Uncertainty
- URL: http://arxiv.org/abs/2502.06749v1
- Date: Mon, 10 Feb 2025 18:22:22 GMT
- Title: Incentivizing Desirable Effort Profiles in Strategic Classification: The Role of Causality and Uncertainty
- Authors: Valia Efthymiou, Chara Podimata, Diptangshu Sen, Juba Ziani,
- Abstract summary: We study strategic classification in binary causal settings where agents can modify their features to improve their classification outcomes.<n>Our results indicate that drives agents to favor features with expected importance and lower importance, potentially misaligning with principal preferences.
- Score: 4.987315310656657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study strategic classification in binary decision-making settings where agents can modify their features in order to improve their classification outcomes. Importantly, our work considers the causal structure across different features, acknowledging that effort in a given feature may affect other features. The main goal of our work is to understand \emph{when and how much agent effort is invested towards desirable features}, and how this is influenced by the deployed classifier, the causal structure of the agent's features, their ability to modify them, and the information available to the agent about the classifier and the feature causal graph. In the complete information case, when agents know the classifier and the causal structure of the problem, we derive conditions ensuring that rational agents focus on features favored by the principal. We show that designing classifiers to induce desirable behavior is generally non-convex, though tractable in special cases. We also extend our analysis to settings where agents have incomplete information about the classifier or the causal graph. While optimal effort selection is again a non-convex problem under general uncertainty, we highlight special cases of partial uncertainty where this selection problem becomes tractable. Our results indicate that uncertainty drives agents to favor features with higher expected importance and lower variance, potentially misaligning with principal preferences. Finally, numerical experiments based on a cardiovascular disease risk study illustrate how to incentivize desirable modifications under uncertainty.
Related papers
- Probing Network Decisions: Capturing Uncertainties and Unveiling Vulnerabilities Without Label Information [19.50321703079894]
We present a novel framework to uncover the weakness of the classifier via counterfactual examples.
We test the performance of our prober's misclassification detection and verify its effectiveness on the image classification benchmark datasets.
arXiv Detail & Related papers (2025-03-12T05:05:58Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Bayesian Strategic Classification [11.439576371711711]
We study the study of partial information release by the learner in strategic classification.
We show how such partial information release can, counter-intuitively, benefit the learner's accuracy, despite increasing agents' abilities to manipulate.
arXiv Detail & Related papers (2024-02-13T19:51:49Z) - Detection and Evaluation of bias-inducing Features in Machine learning [14.045499740240823]
In the context of machine learning (ML), one can use cause-to-effect analysis to understand the reason for the biased behavior of the system.
We propose an approach for systematically identifying all bias-inducing features of a model to help support the decision-making of domain experts.
arXiv Detail & Related papers (2023-10-19T15:01:16Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
We propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs)
Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations.
Our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
arXiv Detail & Related papers (2023-10-14T13:56:24Z) - Causal Discovery with Language Models as Imperfect Experts [119.22928856942292]
We consider how expert knowledge can be used to improve the data-driven identification of causal graphs.
We propose strategies for amending such expert knowledge based on consistency properties.
We report a case study, on real data, where a large language model is used as an imperfect expert.
arXiv Detail & Related papers (2023-07-05T16:01:38Z) - PatchMix Augmentation to Identify Causal Features in Few-shot Learning [55.64873998196191]
Few-shot learning aims to transfer knowledge learned from base with sufficient categories labelled data to novel categories with scarce known information.
We propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency.
We show that such an augmentation mechanism, different from existing ones, is able to identify the causal features.
arXiv Detail & Related papers (2022-11-29T08:41:29Z) - Application of Causal Inference to Analytical Customer Relationship
Management in Banking and Insurance [6.228766191647919]
In statistics, causality has been studied and applied for many years, but not in great detail in artificial intelligence (AI)
In this study, we employed the principles of causal inference to provide explainability for solving the analytical customer relationship management problems.
Good quality counterfactuals were generated for the loan default, insurance fraud detection, and credit card fraud detection datasets.
arXiv Detail & Related papers (2022-08-19T05:57:58Z) - Mitigating Uncertainty of Classifier for Unsupervised Domain Adaptation [21.56619121620334]
We thoroughly examine the role of a classifier in terms of matching source and target distributions.
Our analysis suggests that using these three distributions does result in a consistently improved performance on all the datasets.
arXiv Detail & Related papers (2021-07-01T20:08:15Z) - Information Theoretic Measures for Fairness-aware Feature Selection [27.06618125828978]
We develop a framework for fairness-aware feature selection, based on information theoretic measures for the accuracy and discriminatory impacts of features.
Specifically, our goal is to design a fairness utility score for each feature which quantifies how this feature influences accurate as well as nondiscriminatory decisions.
arXiv Detail & Related papers (2021-06-01T20:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.