Application of Causal Inference to Analytical Customer Relationship
Management in Banking and Insurance
- URL: http://arxiv.org/abs/2208.10916v1
- Date: Fri, 19 Aug 2022 05:57:58 GMT
- Title: Application of Causal Inference to Analytical Customer Relationship
Management in Banking and Insurance
- Authors: Satyam Kumar and Vadlamani Ravi
- Abstract summary: In statistics, causality has been studied and applied for many years, but not in great detail in artificial intelligence (AI)
In this study, we employed the principles of causal inference to provide explainability for solving the analytical customer relationship management problems.
Good quality counterfactuals were generated for the loan default, insurance fraud detection, and credit card fraud detection datasets.
- Score: 6.228766191647919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Of late, in order to have better acceptability among various domain,
researchers have argued that machine intelligence algorithms must be able to
provide explanations that humans can understand causally. This aspect, also
known as causability, achieves a specific level of human-level explainability.
A specific class of algorithms known as counterfactuals may be able to provide
causability. In statistics, causality has been studied and applied for many
years, but not in great detail in artificial intelligence (AI). In a
first-of-its-kind study, we employed the principles of causal inference to
provide explainability for solving the analytical customer relationship
management (ACRM) problems. In the context of banking and insurance, current
research on interpretability tries to address causality-related questions like
why did this model make such decisions, and was the model's choice influenced
by a particular factor? We propose a solution in the form of an intervention,
wherein the effect of changing the distribution of features of ACRM datasets is
studied on the target feature. Subsequently, a set of counterfactuals is also
obtained that may be furnished to any customer who demands an explanation of
the decision taken by the bank/insurance company. Except for the credit card
churn prediction dataset, good quality counterfactuals were generated for the
loan default, insurance fraud detection, and credit card fraud detection
datasets, where changes in no more than three features are observed.
Related papers
- Disentangled Representations for Causal Cognition [0.0]
Causal cognition studies describe the main characteristics of causal learning and reasoning in human and non-human animals.
Machine and reinforcement learning research on causality represent on the one hand a concrete attempt at designing causal artificial agents.
In this work, we connect these two areas of research to build a unifying framework for causal cognition.
arXiv Detail & Related papers (2024-06-30T16:10:17Z) - Improved Churn Causal Analysis Through Restrained High-Dimensional
Feature Space Effects in Financial Institutions [9.84528076130809]
Customer churn describes terminating a relationship with a business or reducing customer engagement over a specific period.
Customer acquisition cost can be five to six times that of customer retention, hence investing in customers with churn risk is wise.
This study presents a conceptual framework to discover the confounding features that correlate with independent variables and are causally related to those dependent variables that impact churn.
arXiv Detail & Related papers (2023-04-23T00:45:35Z) - Grasping Causality for the Explanation of Criticality for Automated
Driving [0.0]
This work introduces a formalization of causal queries whose answers facilitate a causal understanding of safety-relevant influencing factors for automated driving.
Based on Judea Pearl's causal theory, we define a causal relation as a causal structure together with a context.
As availability and quality of data are imperative for validly estimating answers to the causal queries, we also discuss requirements on real-world and synthetic data acquisition.
arXiv Detail & Related papers (2022-10-27T12:37:00Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Causal Discovery for Fairness [3.3861246056563616]
We show how different causal discovery approaches may result in different causal models and how even slight differences between causal models can have significant impact on fairness/discrimination conclusions.
Main goal of this study is to highlight the importance of the causal discovery step to appropriately address fairness using causality.
arXiv Detail & Related papers (2022-06-14T08:40:40Z) - Trying to Outrun Causality with Machine Learning: Limitations of Model
Explainability Techniques for Identifying Predictive Variables [7.106986689736828]
We show that machine learning algorithms are not as flexible as they might seem, and are instead incredibly sensitive to the underling causal structure in the data.
We provide some alternative recommendations for researchers wanting to explore the data for important variables.
arXiv Detail & Related papers (2022-02-20T17:48:54Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.