Solving the Content Gap in Roblox Game Recommendations: LLM-Based Profile Generation and Reranking
- URL: http://arxiv.org/abs/2502.06802v1
- Date: Sat, 01 Feb 2025 06:30:56 GMT
- Title: Solving the Content Gap in Roblox Game Recommendations: LLM-Based Profile Generation and Reranking
- Authors: Chen Wang, Xiaokai Wei, Yexi Jiang, Frank Ong, Kevin Gao, Xiao Yu, Zheng Hui, Se-eun Yoon, Philip Yu, Michelle Gong,
- Abstract summary: Large language models (LLMs) offer opportunities to enhance recommendation systems by analyzing in-game text data.
This paper addresses two challenges: generating high-quality, structured text features for games without extensive human annotation, and validating these features to ensure they improve recommendation relevance.
We propose an approach that extracts in-game text and uses LLMs to infer attributes such as genre and gameplay objectives from raw player interactions.
- Score: 9.256631838119102
- License:
- Abstract: With the vast and dynamic user-generated content on Roblox, creating effective game recommendations requires a deep understanding of game content. Traditional recommendation models struggle with the inconsistent and sparse nature of game text features such as titles and descriptions. Recent advancements in large language models (LLMs) offer opportunities to enhance recommendation systems by analyzing in-game text data. This paper addresses two challenges: generating high-quality, structured text features for games without extensive human annotation, and validating these features to ensure they improve recommendation relevance. We propose an approach that extracts in-game text and uses LLMs to infer attributes such as genre and gameplay objectives from raw player interactions. Additionally, we introduce an LLM-based re-ranking mechanism to assess the effectiveness of the generated text features, enhancing personalization and user satisfaction. Beyond recommendations, our approach supports applications such as user engagement-based integrity detection, already deployed in production. This scalable framework demonstrates the potential of in-game text understanding to improve recommendation quality on Roblox and adapt recommendations to its unique, user-generated ecosystem.
Related papers
- RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension.
Existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items.
We propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec)
arXiv Detail & Related papers (2025-02-10T02:15:12Z) - Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation [55.5687800992432]
We propose a plug-and-play framework that synergizes Large Language Models (LLMs) and Knowledge Graphs (KGs) to unveil user preferences.
This enables the LLM to transform KG entities into concise natural language descriptions, allowing them to comprehend domain-specific knowledge.
arXiv Detail & Related papers (2024-11-16T11:47:21Z) - Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.73461454584274]
We introduce a new dataset (REGEN) for natural language generation tasks in conversational recommendations.
We establish benchmarks using well-known generative metrics, and perform an automated evaluation of the new dataset using a rater LLM.
And to the best of our knowledge, represents the first attempt to analyze the capabilities of LLMs in understanding recommender signals and generating rich narratives.
arXiv Detail & Related papers (2024-10-22T07:53:41Z) - A Prompting-Based Representation Learning Method for Recommendation with Large Language Models [2.1161973970603998]
We introduce the Prompting-Based Representation Learning Method for Recommendation (P4R) to boost the linguistic abilities of Large Language Models (LLMs) in Recommender Systems.
In our P4R framework, we utilize the LLM prompting strategy to create personalized item profiles.
In our evaluation, we compare P4R with state-of-the-art Recommender models and assess the quality of prompt-based profile generation.
arXiv Detail & Related papers (2024-09-25T07:06:14Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - Language Model-In-The-Loop: Data Optimal Approach to Learn-To-Recommend
Actions in Text Games [16.281640651021434]
Large Language Models (LLMs) have demonstrated superior performance in language understanding benchmarks.
LLMs leverage linguistic priors of LLMs -- GPT-2 -- for action candidate recommendations to improve the performance in text games.
CalM adapts GPT-2 with annotated human gameplays and keeps the LLM fixed during the learning of the text based games.
arXiv Detail & Related papers (2023-11-13T19:12:49Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques.
We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading (MPRC) tasks.
arXiv Detail & Related papers (2020-10-05T23:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.