RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning
- URL: http://arxiv.org/abs/2503.20430v1
- Date: Wed, 26 Mar 2025 11:03:34 GMT
- Title: RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning
- Authors: Sichun Luo, Jian Xu, Xiaojie Zhang, Linrong Wang, Sicong Liu, Hanxu Hou, Linqi Song,
- Abstract summary: We propose Representation learning and textbfReasoning empowered retrieval-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+).
- Score: 22.495874056980824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been integrated into recommender systems to enhance user behavior comprehension. The Retrieval Augmented Generation (RAG) technique is further incorporated into these systems to retrieve more relevant items and improve system performance. However, existing RAG methods have two shortcomings. \textit{(i)} In the \textit{retrieval} stage, they rely primarily on textual semantics and often fail to incorporate the most relevant items, thus constraining system effectiveness. \textit{(ii)} In the \textit{generation} stage, they lack explicit chain-of-thought reasoning, further limiting their potential. In this paper, we propose Representation learning and \textbf{R}easoning empowered retrieval-\textbf{A}ugmented \textbf{L}arge \textbf{L}anguage model \textbf{Rec}ommendation (RALLRec+). Specifically, for the retrieval stage, we prompt LLMs to generate detailed item descriptions and perform joint representation learning, combining textual and collaborative signals extracted from the LLM and recommendation models, respectively. To account for the time-varying nature of user interests, we propose a simple yet effective reranking method to capture preference dynamics. For the generation phase, we first evaluate reasoning LLMs on recommendation tasks, uncovering valuable insights. Then we introduce knowledge-injected prompting and consistency-based merging approach to integrate reasoning LLMs with general-purpose LLMs, enhancing overall performance. Extensive experiments on three real world datasets validate our method's effectiveness.
Related papers
- Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems) is a training-free framework that combines graph retrieval-augmented generation and in-context learning.
G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
arXiv Detail & Related papers (2025-03-09T03:56:22Z) - EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration [60.47645731801866]
Large language models (LLMs) are increasingly leveraged as foundational backbones in advanced recommender systems.
LLMs are pre-trained linguistic semantics but learn collaborative semantics from scratch via the llm-Backbone.
We propose EAGER-LLM, a decoder-only generative recommendation framework that integrates endogenous and endogenous behavioral and semantic information in a non-intrusive manner.
arXiv Detail & Related papers (2025-02-20T17:01:57Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension.<n>Existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items.<n>We propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec)
arXiv Detail & Related papers (2025-02-10T02:15:12Z) - Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [44.685176786857284]
We propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels.<n>At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information.<n>For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks.<n>At the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components
arXiv Detail & Related papers (2025-01-23T03:05:13Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)<n>We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.