Efficient Diffusion Models: A Survey
- URL: http://arxiv.org/abs/2502.06805v1
- Date: Mon, 03 Feb 2025 10:15:08 GMT
- Title: Efficient Diffusion Models: A Survey
- Authors: Hui Shen, Jingxuan Zhang, Boning Xiong, Rui Hu, Shoufa Chen, Zhongwei Wan, Xin Wang, Yu Zhang, Zixuan Gong, Guangyin Bao, Chaofan Tao, Yongfeng Huang, Ye Yuan, Mi Zhang,
- Abstract summary: Diffusion models have emerged as powerful generative models capable of producing high-quality contents.
These capabilities come at the cost of their significant computational resources and lengthy generation time.
We provide a systematic and comprehensive review of research on efficient diffusion models.
- Score: 33.6141754415072
- License:
- Abstract: Diffusion models have emerged as powerful generative models capable of producing high-quality contents such as images, videos, and audio, demonstrating their potential to revolutionize digital content creation. However, these capabilities come at the cost of their significant computational resources and lengthy generation time, underscoring the critical need to develop efficient techniques for practical deployment. In this survey, we provide a systematic and comprehensive review of research on efficient diffusion models. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient diffusion model topics from algorithm-level, system-level, and framework perspective, respectively. We have also created a GitHub repository where we organize the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/Efficient-Diffusion-Model-Survey. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of efficient diffusion model research and inspire them to contribute to this important and exciting field.
Related papers
- Diffusion Models in Recommendation Systems: A Survey [8.741075482543991]
Diffusion models in recommender systems excel in managing complex user and item distributions.
We propose a taxonomy on past research papers in recommender systems that utilize diffusion models.
We present the foundation algorithms in diffusion models and their applications in recommender systems.
arXiv Detail & Related papers (2025-01-17T20:43:47Z) - A Survey on Diffusion Models for Recommender Systems [36.543994040915926]
We present the first comprehensive survey on diffusion models for recommendation.
DMs have emerged as promising solutions for recommender systems due to their robust generative capabilities.
Our taxonomy highlights the unique strengths of diffusion models in capturing complex data distributions.
arXiv Detail & Related papers (2024-09-08T08:57:12Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - YaART: Yet Another ART Rendering Technology [119.09155882164573]
This study introduces YaART, a novel production-grade text-to-image cascaded diffusion model aligned to human preferences.
We analyze how these choices affect both the efficiency of the training process and the quality of the generated images.
We demonstrate that models trained on smaller datasets of higher-quality images can successfully compete with those trained on larger datasets.
arXiv Detail & Related papers (2024-04-08T16:51:19Z) - Generative AI in Vision: A Survey on Models, Metrics and Applications [0.0]
Generative AI models have revolutionized various fields by enabling the creation of realistic and diverse data samples.
Among these models, diffusion models have emerged as a powerful approach for generating high-quality images, text, and audio.
This survey paper provides a comprehensive overview of generative AI diffusion and legacy models, focusing on their underlying techniques, applications across different domains, and their challenges.
arXiv Detail & Related papers (2024-02-26T07:47:12Z) - Efficient Large Language Models: A Survey [45.39970635367852]
This survey provides a systematic and comprehensive review of efficient Large Language Models research.
We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics.
We have also created a GitHub repository where we organize the papers featured in this survey.
arXiv Detail & Related papers (2023-12-06T19:18:42Z) - A Survey on Video Diffusion Models [103.03565844371711]
The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision.
Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers.
This paper presents a comprehensive review of video diffusion models in the AIGC era.
arXiv Detail & Related papers (2023-10-16T17:59:28Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.
The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.
This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.