Diffusion Models in Recommendation Systems: A Survey
- URL: http://arxiv.org/abs/2501.10548v2
- Date: Wed, 19 Feb 2025 05:22:32 GMT
- Title: Diffusion Models in Recommendation Systems: A Survey
- Authors: Ting-Ruen Wei, Yi Fang,
- Abstract summary: Diffusion models in recommender systems excel in managing complex user and item distributions.
We propose a taxonomy on past research papers in recommender systems that utilize diffusion models.
We present the foundation algorithms in diffusion models and their applications in recommender systems.
- Score: 8.741075482543991
- License:
- Abstract: Recommender systems remain an essential topic due to its wide application in various domains and the business potential behind them. With the rise of deep learning, common solutions have leveraged neural networks to facilitate collaborative filtering, and some have turned to generative adversarial networks to augment the dataset and tackle the data sparsity issue. However, they are limited in learning the complex user and item distribution and still suffer from model collapse. Given the great generation capability exhibited by diffusion models in computer vision recently, many recommender systems have adopted diffusion models and found improvements in performance for various tasks. Diffusion models in recommender systems excel in managing complex user and item distributions and do not suffer from mode collapse. With these advantages, the amount of research in this domain have been growing rapidly and calling for a systematic survey. In this survey paper, we present and propose a taxonomy on past research papers in recommender systems that utilize diffusion models. Distinct from a prior survey paper that categorizes based on the role of the diffusion model, we categorize based on the recommendation task at hand. The decision originates from the rationale that after all, the adoption of diffusion models is to enhance the recommendation performance, not vice versa: adapting the recommendation task to enable diffusion models. Nonetheless, we offer a unique perspective for diffusion models in recommender systems complementary to existing surveys. We present the foundation algorithms in diffusion models and their applications in recommender systems to summarize the rapid development in this field. Finally, we discuss open research directions to prepare and encourage further efforts to advance the field. We compile the relevant papers in a public GitHub repository.
Related papers
- A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
We provide an overview of methods that utilize pre-trained diffusion models to solve inverse problems without requiring further training.
We discuss specific challenges and potential solutions associated with using latent diffusion models for inverse problems.
arXiv Detail & Related papers (2024-09-30T17:34:01Z) - Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation [0.0]
Diffusion is a new approach to generative AI that improves on previous generative AI approaches.
We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items.
arXiv Detail & Related papers (2024-09-16T17:27:27Z) - A Survey on Diffusion Models for Recommender Systems [36.543994040915926]
We present the first comprehensive survey on diffusion models for recommendation.
DMs have emerged as promising solutions for recommender systems due to their robust generative capabilities.
Our taxonomy highlights the unique strengths of diffusion models in capturing complex data distributions.
arXiv Detail & Related papers (2024-09-08T08:57:12Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Diffusion Models for Reinforcement Learning: A Survey [22.670096541841325]
Diffusion models surpass previous generative models in sample quality and training stability.
Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions.
This survey aims to provide an overview of this emerging field and hopes to inspire new avenues of research.
arXiv Detail & Related papers (2023-11-02T13:23:39Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.