RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning
- URL: http://arxiv.org/abs/2502.06825v1
- Date: Wed, 05 Feb 2025 11:26:32 GMT
- Title: RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning
- Authors: Minxiao Chen, Haitao Yuan, Nan Jiang, Zhihan Zheng, Sai Wu, Ao Zhou, Shangguang Wang,
- Abstract summary: This paper introduces a novel framework that achieves high accuracy and efficient matching while ensuring robustness in handling diverse scenarios.
To improve efficiency, we begin by modeling the online map matching problem as an Online Markov Decision Process.
Next, to enhance the model's robustness, we design a reinforcement learning method, enabling robust handling of real-time data.
- Score: 15.616652008152098
- License:
- Abstract: Online map matching is a fundamental problem in location-based services, aiming to incrementally match trajectory data step-by-step onto a road network. However, existing methods fail to meet the needs for efficiency, robustness, and accuracy required by large-scale online applications, making this task still a challenging problem. This paper introduces a novel framework that achieves high accuracy and efficient matching while ensuring robustness in handling diverse scenarios. To improve efficiency, we begin by modeling the online map matching problem as an Online Markov Decision Process (OMDP) based on its inherent characteristics. This approach helps efficiently merge historical and real-time data, reducing unnecessary calculations. Next, to enhance the model's robustness, we design a reinforcement learning method, enabling robust handling of real-time data from dynamically changing environments. In particular, we propose a novel model learning process and a comprehensive reward function, allowing the model to make reasonable current matches from a future-oriented perspective, and to continuously update and optimize during the decision-making process based on feedback. Lastly, to address the heterogeneity between trajectories and roads, we design distinct graph structures, facilitating efficient representation learning through graph and recurrent neural networks. To further align trajectory and road data, we introduce contrastive learning to decrease their distance in the latent space, thereby promoting effective integration of the two. Extensive evaluations on three real-world datasets confirm that our method significantly outperforms existing state-of-the-art solutions in terms of accuracy, efficiency and robustness.
Related papers
- Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification [52.251569042852815]
We introduce an online broad learning system framework with closed-form solutions for each online update.
We design an effective weight estimation algorithm and an efficient online updating strategy.
Our framework is naturally extended to data stream scenarios with concept drift and exceeds state-of-the-art baselines.
arXiv Detail & Related papers (2025-01-28T13:21:59Z) - RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning [5.4674463400564886]
En Route Travel Time Estimation aims to learn driving patterns from traveled routes to achieve rapid and accurate real-time predictions.
Existing methods ignore the complexity and dynamism of real-world traffic systems, resulting in significant gaps in efficiency and accuracy in real-time scenarios.
This paper proposes a novel framework that redefines the path implementation of ER-TTE to achieve highly efficient and effective predictions.
arXiv Detail & Related papers (2025-01-26T11:49:34Z) - A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers [37.859185005986056]
Online multi-task learning (OMTL) enhances streaming data processing by leveraging the inherent relations among multiple tasks.
This study proposes a novel OMTL framework based on the alternating direction multiplier method (ADMM), a recent breakthrough in optimization suitable for the distributed computing environment.
arXiv Detail & Related papers (2024-11-09T10:20:13Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy.
We propose a dual-modal framework for target localization, consisting of robust localization suppressingors via ONR and the accurate localization attending to the target center precisely via OFC.
arXiv Detail & Related papers (2021-03-18T08:47:56Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.