論文の概要: Prot2Chat: Protein LLM with Early-Fusion of Text, Sequence and Structure
- arxiv url: http://arxiv.org/abs/2502.06846v2
- Date: Thu, 22 May 2025 09:43:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:21.528906
- Title: Prot2Chat: Protein LLM with Early-Fusion of Text, Sequence and Structure
- Title(参考訳): Prot2Chat: テキスト・シーケンス・構造の初期融合によるタンパク質LLM
- Authors: Zhicong Wang, Zicheng Ma, Ziqiang Cao, Changlong Zhou, Jun Zhang, Yiqin Gao,
- Abstract要約: タンパク質配列と構造情報を統一的にエンコードするために,タンパク質MPNNを改変した。
我々は,大規模言語モデル(LLM)を用いて質問をベクトルにエンコードし,タンパク質情報を仮想トークンに圧縮するタンパク質テキストアダプタを開発した。
- 参考スコア(独自算出の注目度): 7.9473027178525975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: Proteins are of great significance in living organisms. However, understanding their functions encounters numerous challenges, such as insufficient integration of multimodal information, a large number of training parameters, limited flexibility of classification-based methods, and the lack of systematic evaluation metrics for protein Q&A systems. To tackle these issues, we propose the Prot2Chat framework. Results: We modified ProteinMPNN to encode protein sequence and structural information in a unified way. We used a large language model (LLM) to encode questions into vectors and developed a protein-text adapter to compress protein information into virtual tokens based on these vectors, achieving the early fusion of text and protein information. Finally, the same LLM reads the virtual tokens and the questions to generate answers. To optimize training efficiency, we froze the encoder and employed Low-Rank Adaptation (LoRA) techniques for the LLM. Experiments on two datasets show that both automated metrics and expert evaluations demonstrate the superior performance of our model, and zero-shot prediction results highlight its generalization ability. The models and codes are available at https://github.com/ wangzc1233/Prot2Chat. Contact: zqcao@suda.edu.cn or wangzc025@163.com Key words: Protein Q&A, Early-Fusion, LLM
- Abstract(参考訳): モチベーション(Motivation):タンパク質は生物において非常に重要である。
しかし、それらの機能を理解するには、マルチモーダル情報の不十分な統合、多数のトレーニングパラメータ、分類に基づく手法の柔軟性の制限、タンパク質Q&Aシステムの体系的評価指標の欠如など、多くの課題に直面する。
これらの問題に対処するため、我々はProt2Chatフレームワークを提案する。
結果:タンパク質配列と構造情報を統一的にエンコードするために,タンパク質MPNNを改変した。
我々は,大規模言語モデル(LLM)を用いて質問をベクトルにエンコードし,これらのベクトルに基づいてタンパク質情報を仮想トークンに圧縮するタンパク質テキストアダプタを開発し,テキストとタンパク質情報の早期融合を実現した。
最後に、同じLLMが仮想トークンと質問を読み取って回答を生成する。
トレーニング効率を最適化するために,エンコーダを凍結し,Low-Rank Adaptation (LoRA) 技術を用いた。
2つのデータセットの実験では、自動測定と専門家評価の両方がモデルの優れた性能を示しており、ゼロショット予測の結果はその一般化能力を強調している。
モデルとコードはhttps://github.com/wangzc1233/Prot2Chat.comで公開されている。
コンタクト: zqcao@suda.edu.cn or wangzc025@163.com キーワード: protein Q&A, Early-Fusion, LLM
関連論文リスト
- ProtTeX: Structure-In-Context Reasoning and Editing of Proteins with Large Language Models [8.520384176663423]
大規模言語モデルは分子科学の分野で顕著な進歩を遂げた。
タンパク質科学において、アミノ酸配列はLDMの唯一のトークン化剤として機能する。
本稿では,タンパク質配列,構造,テキスト情報を統一された離散空間にトークン化する新しいフレームワークであるProtを紹介する。
論文 参考訳(メタデータ) (2025-03-11T08:43:05Z) - Protein Large Language Models: A Comprehensive Survey [71.65899614084853]
タンパク質特異的な大規模言語モデル(Protein LLMs)は、より効率的なタンパク質構造予測、機能アノテーション、設計を可能にすることで、タンパク質科学に革命をもたらしている。
この作業は、アーキテクチャ、データセットのトレーニング、評価メトリクス、さまざまなアプリケーションをカバーする、Protein LLMの最初の包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-02-21T19:22:10Z) - Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
計算タンパク質科学(Computational protein science)は、タンパク質配列構造-機能パラダイムにおける知識を明らかにすること、および応用を開発することを目的としている。
最近、言語モデル (Language Models, PLM) は、前例のない言語処理と一般化能力のために、AIのマイルストーンとして登場した。
論文 参考訳(メタデータ) (2025-01-17T16:21:18Z) - EvoLlama: Enhancing LLMs' Understanding of Proteins via Multimodal Structure and Sequence Representations [28.298740080002077]
タンパク質を理解するための現在の大規模言語モデル(LLM)は、主にアミノ酸配列をテキストモダリティとして扱う。
EvoLlamaは構造ベースのエンコーダ、配列ベースのタンパク質エンコーダ、およびタンパク質理解のためのLLMを接続するフレームワークである。
実験の結果,EvoLlamaのタンパク質理解能力は著しく向上した。
論文 参考訳(メタデータ) (2024-12-16T10:01:33Z) - Long-context Protein Language Modeling Using Bidirectional Mamba with Shared Projection Layers [76.95505296417866]
言語モデル(LM)の自己教師による訓練は、有意義な表現の学習や創薬設計において、タンパク質配列に大きな成功を収めている。
ほとんどのタンパク質LMは、短い文脈長を持つ個々のタンパク質に基づいて訓練されたトランスフォーマーアーキテクチャに基づいている。
そこで本研究では,選択的構造化状態空間モデルに基づく代替タンパク質であるBiMamba-Sに基づくLC-PLMを提案する。
論文 参考訳(メタデータ) (2024-10-29T16:43:28Z) - Structure-Enhanced Protein Instruction Tuning: Towards General-Purpose Protein Understanding [43.811432723460534]
本稿では,このギャップを埋めるために,構造強化タンパク質インストラクションチューニング(SEPIT)フレームワークを紹介する。
提案手法では, 構造的知識を付加するため, 構造的知識を付加し, これらの拡張された pLM を大規模言語モデル (LLM) に接続し, タンパク質の理解を創出する。
我々はこれまでで最大かつ最も包括的なタンパク質命令データセットを構築し、汎用タンパク質理解モデルの訓練と評価を可能にした。
論文 参考訳(メタデータ) (2024-10-04T16:02:50Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
本稿では,タンパク質中心タスクとタンパク質言語タスクの両方を対象とした多機能多言語多言語言語モデル (LLM) を提案する。
ProtLLMはユニークな動的タンパク質実装機構を備えており、複雑な入力を処理できる。
専門的なタンパク質語彙を開発することで、自然言語だけでなく、膨大な候補からタンパク質を予測できる能力をモデルに装備する。
論文 参考訳(メタデータ) (2024-02-28T01:29:55Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
本稿では,タンパク質の理解と生成を同時に行うために,統一されたタンパク質言語モデル xTrimoPGLM を提案する。
xTrimoPGLMは、4つのカテゴリにわたる18のタンパク質理解ベンチマークにおいて、他の高度なベースラインを著しく上回っている。
また、自然の原理に従ってデノボタンパク質配列を生成でき、微調整を監督した後にプログラム可能な生成を行うことができる。
論文 参考訳(メタデータ) (2024-01-11T15:03:17Z) - Progressive Multi-Modality Learning for Inverse Protein Folding [47.095862120116976]
マルチモーダルトランスファー学習を利用するMMDesignと呼ばれる新しいタンパク質設計パラダイムを提案する。
MMDesignは、事前訓練された構造モジュールと事前訓練されたコンテキストモジュールを組み合わせる最初のフレームワークである。
実験結果は、小さなデータセットでのみトレーニングした結果、MMDesignが様々な公開ベンチマークのベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-12-11T10:59:23Z) - Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers [18.498779242323582]
本稿では,タンパク質の機能を自由テキスト形式で予測する新しいアプローチであるProt2Textを提案する。
エンコーダ・デコーダフレームワークでグラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を組み合わせることにより,本モデルは多種多様なデータ型を効果的に統合する。
論文 参考訳(メタデータ) (2023-07-25T09:35:43Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
効果的なタンパク質表現の学習は、タンパク質機能の予測のような生物学の様々なタスクにおいて重要である。
近年, タンパク質言語モデル(PLM)に基づく配列表現学習法は, 配列ベースタスクでは優れているが, タンパク質構造に関わるタスクへの直接適応は依然として困難である。
本研究は、最先端のPLMと異なる構造エンコーダを統合することで、結合タンパク質表現学習の包括的研究を行う。
論文 参考訳(メタデータ) (2023-03-11T01:24:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。