Global Ease of Living Index: a machine learning framework for longitudinal analysis of major economies
- URL: http://arxiv.org/abs/2502.06866v2
- Date: Wed, 19 Feb 2025 21:59:23 GMT
- Title: Global Ease of Living Index: a machine learning framework for longitudinal analysis of major economies
- Authors: Tanay Panat, Rohitash Chandra,
- Abstract summary: The drastic changes in the global economy, geopolitical conditions, and disruptions such as the COVID-19 pandemic have impacted the cost of living and quality of life.
We present an approach to quantifying the quality of life through the Global Ease of Living Index that combines various socio-economic and infrastructural factors into a single composite score.
- Score: 0.196629787330046
- License:
- Abstract: The drastic changes in the global economy, geopolitical conditions, and disruptions such as the COVID-19 pandemic have impacted the cost of living and quality of life. It is important to understand the long-term nature of the cost of living and quality of life in major economies. A transparent and comprehensive living index must include multiple dimensions of living conditions. In this study, we present an approach to quantifying the quality of life through the Global Ease of Living Index that combines various socio-economic and infrastructural factors into a single composite score. Our index utilises economic indicators that define living standards, which could help in targeted interventions to improve specific areas. We present a machine learning framework for addressing the problem of missing data for some of the economic indicators for specific countries. We then curate and update the data and use a dimensionality reduction approach (principal component analysis) to create the Ease of Living Index for major economies since 1970. Our work significantly adds to the literature by offering a practical tool for policymakers to identify areas needing improvement, such as healthcare systems, employment opportunities, and public safety. Our approach with open data and code can be easily reproduced and applied to various contexts. This transparency and accessibility make our work a valuable resource for ongoing research and policy development in quality-of-life assessment.
Related papers
- How Your Location Relates to Health: Variable Importance and Interpretable Machine Learning for Environmental and Sociodemographic Data [15.463748602675695]
Health outcomes depend on complex environmental and sociodemographic factors whose effects change over location and time.
We use fine-grained spatial and temporal data to study these effects, namely the MEDSAT dataset of English health, environmental, and sociodemographic information.
We then develop an interpretable machine learning framework based on Generalized Additive Models (GAMs) and Multiscale Geographically Weighted Regression (MGWR)
Our findings identify NO2 as a global predictor for asthma, hypertension, and anxiety, alongside other outcome-specific predictors related to occupation, marriage, and vegetation.
arXiv Detail & Related papers (2025-01-03T21:34:35Z) - World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions.
One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments.
We propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency.
arXiv Detail & Related papers (2024-12-09T11:40:54Z) - Evaluating and Improving Continual Learning in Spoken Language
Understanding [58.723320551761525]
We propose an evaluation methodology that provides a unified evaluation on stability, plasticity, and generalizability in continual learning.
By employing the proposed metric, we demonstrate how introducing various knowledge distillations can improve different aspects of these three properties of the SLU model.
arXiv Detail & Related papers (2024-02-16T03:30:27Z) - Digital Divides in Scene Recognition: Uncovering Socioeconomic Biases in
Deep Learning Systems [0.0]
We investigate the biases of deep convolutional neural networks (dCNNs) in scene classification.
We use nearly one million images from global and US sources, including user-submitted home photographs and Airbnb listings.
Our analyses revealed significant socioeconomic bias, where pretrained dCNNs demonstrated lower classification accuracy, lower classification confidence, and a higher tendency to assign labels that could be offensive.
arXiv Detail & Related papers (2024-01-23T21:22:06Z) - Religious Affiliation in the Twenty-First Century: A Machine Learning
Perspective on the World Value Survey [0.0]
This paper is a quantitative analysis of the data collected globally by the World Value Survey.
We aim to identify the key factors of religiosity and classify respondents of the survey as religious and non religious.
Results of the variable importance analysis suggest that Age and Income are the most important variables in the majority of countries.
arXiv Detail & Related papers (2023-10-16T23:01:16Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Learning Economic Indicators by Aggregating Multi-Level Geospatial
Information [20.0397537179667]
This research presents a deep learning model to predict economic indicators via aggregating traits observed from multiple levels of geographical units.
Our new multi-level learning model substantially outperforms strong baselines in predicting key indicators such as population, purchasing power, and energy consumption.
We discuss the multi-level model's implications for measuring inequality, which is the essential first step in policy and social science research on inequality and poverty.
arXiv Detail & Related papers (2022-05-03T13:05:39Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - The Past, Present, and Future of COVID-19: A Data-Driven Perspective [4.373183416616983]
We report results on our development and deployment of a web-based integrated real-time operational dashboard as an important decision support system for COVID-19.
We conducted data-driven analysis based on available data from diverse authenticated sources to predict upcoming consequences of the pandemic.
We also explored correlations between pandemic spread and important socio-economic and environmental factors.
arXiv Detail & Related papers (2020-08-12T19:03:57Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery.
By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health.
arXiv Detail & Related papers (2020-06-15T18:12:12Z) - A Philosophy of Data [91.3755431537592]
We work from the fundamental properties necessary for statistical computation to a definition of statistical data.
We argue that the need for useful data to be commensurable rules out an understanding of properties as fundamentally unique or equal.
With our increasing reliance on data and data technologies, these two characteristics of data affect our collective conception of reality.
arXiv Detail & Related papers (2020-04-15T14:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.