From Image to Video: An Empirical Study of Diffusion Representations
- URL: http://arxiv.org/abs/2502.07001v1
- Date: Mon, 10 Feb 2025 19:53:46 GMT
- Title: From Image to Video: An Empirical Study of Diffusion Representations
- Authors: Pedro Vélez, Luisa F. Polanía, Yi Yang, Chuhan Zhang, Rishab Kabra, Anurag Arnab, Mehdi S. M. Sajjadi,
- Abstract summary: Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis.
This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
- Score: 35.46566116011867
- License:
- Abstract: Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
Related papers
- RepVideo: Rethinking Cross-Layer Representation for Video Generation [53.701548524818534]
We propose RepVideo, an enhanced representation framework for text-to-video diffusion models.
By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information.
Our experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, but also improves temporal consistency in video generation.
arXiv Detail & Related papers (2025-01-15T18:20:37Z) - Video In-context Learning [46.40277880351059]
In this paper, we study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences.
To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets.
We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results.
arXiv Detail & Related papers (2024-07-10T04:27:06Z) - Toward a Diffusion-Based Generalist for Dense Vision Tasks [141.03236279493686]
Recent works have shown image itself can be used as a natural interface for general-purpose visual perception.
We propose to perform diffusion in pixel space and provide a recipe for finetuning pre-trained text-to-image diffusion models for dense vision tasks.
In experiments, we evaluate our method on four different types of tasks and show competitive performance to the other vision generalists.
arXiv Detail & Related papers (2024-06-29T17:57:22Z) - DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance [69.0740091741732]
We propose a high-fidelity image-to-video generation method by devising a frame retention branch based on a pre-trained video diffusion model, named DreamVideo.
Our model has a powerful image retention ability and delivers the best results in UCF101 compared to other image-to-video models to our best knowledge.
arXiv Detail & Related papers (2023-12-05T03:16:31Z) - Foveation in the Era of Deep Learning [6.602118206533142]
We introduce an end-to-end differentiable foveated active vision architecture that leverages a graph convolutional network to process foveated images.
Our model learns to iteratively attend to regions of the image relevant for classification.
We find that our model outperforms a state-of-the-art CNN and foveated vision architectures of comparable parameters and a given pixel or budget.
arXiv Detail & Related papers (2023-12-03T16:48:09Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
We introduce SODA, a self-supervised diffusion model, designed for representation learning.
The model incorporates an image encoder, which distills a source view into a compact representation, that guides the generation of related novel views.
We show that by imposing a tight bottleneck between the encoder and a denoising decoder, we can turn diffusion models into strong representation learners.
arXiv Detail & Related papers (2023-11-29T18:53:34Z) - Saliency-based Video Summarization for Face Anti-spoofing [4.730428911461921]
We present a video summarization method for face anti-spoofing detection that aims to enhance the performance of deep learning models by leveraging visual saliency.
In particular, saliency information is extracted from the differences between the Laplacian and Wiener filter outputs of the source images.
Weighting maps are then computed based on the saliency information, indicating the importance of each pixel in the image.
arXiv Detail & Related papers (2023-08-23T18:08:32Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.