Federated Sinkhorn
- URL: http://arxiv.org/abs/2502.07021v1
- Date: Mon, 10 Feb 2025 20:29:57 GMT
- Title: Federated Sinkhorn
- Authors: Jeremy Kulcsar, Vyacheslav Kungurtsev, Georgios Korpas, Giulio Giaconi, William Shoosmith,
- Abstract summary: We investigate the potential of solving the discrete Optimal Transport problem with entropy regularization in a federated learning setting.
We consider both synchronous and asynchronous variants as well as all-to-all and server-client communication protocols.
We empirically demonstrate the algorithms performance on synthetic datasets and a real-world financial risk assessment application.
- Score: 2.589644824000165
- License:
- Abstract: In this work we investigate the potential of solving the discrete Optimal Transport (OT) problem with entropy regularization in a federated learning setting. Recall that the celebrated Sinkhorn algorithm transforms the classical OT linear program into strongly convex constrained optimization, facilitating first order methods for otherwise intractably large problems. A common contemporary setting that remains an open problem as far as the application of Sinkhorn is the presence of data spread across clients with distributed inter-communication, either due to clients whose privacy is a concern, or simply by necessity of processing and memory hardware limitations. In this work we investigate various natural procedures, which we refer to as Federated Sinkhorn, that handle distributed environments where data is partitioned across multiple clients. We formulate the problem as minimizing the transport cost with an entropy regularization term, subject to marginal constraints, where block components of the source and target distribution vectors are locally known to clients corresponding to each block. We consider both synchronous and asynchronous variants as well as all-to-all and server-client communication topology protocols. Each procedure allows clients to compute local operations on their data partition while periodically exchanging information with others. We provide theoretical guarantees on convergence for the different variants under different possible conditions. We empirically demonstrate the algorithms performance on synthetic datasets and a real-world financial risk assessment application. The investigation highlights the subtle tradeoffs associated with computation and communication time in different settings and how they depend on problem size and sparsity.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - Federated Contextual Cascading Bandits with Asynchronous Communication
and Heterogeneous Users [95.77678166036561]
We propose a UCB-type algorithm with delicate communication protocols.
We give sub-linear regret bounds on par with those achieved in the synchronous framework.
Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.
arXiv Detail & Related papers (2024-02-26T05:31:14Z) - Federated Gradient Matching Pursuit [17.695717854068715]
Traditional machine learning techniques require centralizing all training data on one server or data hub.
In particular, federated learning (FL) provides such a solution to learn a shared model while keeping training data at local clients.
We propose a novel algorithmic framework, federated gradient matching pursuit (FedGradMP), to solve the sparsity constrained minimization problem in the FL setting.
arXiv Detail & Related papers (2023-02-20T16:26:29Z) - Federated Minimax Optimization with Client Heterogeneity [11.558008138030845]
Minimax computation has seen a surge in interest with the advent modern applications such as GANs.
We propose a general federated minimax framework that subsumes settings and existing methods like Local SGDA.
arXiv Detail & Related papers (2023-02-08T18:33:55Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
We propose a novel method FedFM, which guides each client's features to match shared category-wise anchors.
To achieve higher efficiency and flexibility, we propose a FedFM variant, called FedFM-Lite, where clients communicate with server with fewer synchronization times and communication bandwidth costs.
arXiv Detail & Related papers (2022-10-14T08:11:34Z) - Communication-Efficient Federated Learning With Data and Client
Heterogeneity [22.432529149142976]
Federated Learning (FL) enables large-scale distributed training of machine learning models.
executing FL at scale comes with inherent practical challenges.
We present the first variant of the classic federated averaging (FedAvg) algorithm.
arXiv Detail & Related papers (2022-06-20T22:39:39Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - FedChain: Chained Algorithms for Near-Optimal Communication Cost in
Federated Learning [24.812767482563878]
Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients.
We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R.
arXiv Detail & Related papers (2021-08-16T02:57:06Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMO is the first (first-order) FLtexttFedGLOMO algorithm.
Our algorithm is provably optimal even with communication between the clients and the server.
arXiv Detail & Related papers (2020-12-07T21:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.