Automated Consistency Analysis of LLMs
- URL: http://arxiv.org/abs/2502.07036v1
- Date: Mon, 10 Feb 2025 21:03:24 GMT
- Title: Automated Consistency Analysis of LLMs
- Authors: Aditya Patwardhan, Vivek Vaidya, Ashish Kundu,
- Abstract summary: Generative AI with large language models (LLMs) are being widely adopted across the industry, academia and government.
One of the key challenge to the trustworthiness and reliability of LLMs is: how consistent an LLM is in its responses.
This paper proposes two approaches to validate consistency: self-validation, and validation across multiple LLMs.
- Score: 0.1747820331822631
- License:
- Abstract: Generative AI (Gen AI) with large language models (LLMs) are being widely adopted across the industry, academia and government. Cybersecurity is one of the key sectors where LLMs can be and/or are already being used. There are a number of problems that inhibit the adoption of trustworthy Gen AI and LLMs in cybersecurity and such other critical areas. One of the key challenge to the trustworthiness and reliability of LLMs is: how consistent an LLM is in its responses? In this paper, we have analyzed and developed a formal definition of consistency of responses of LLMs. We have formally defined what is consistency of responses and then develop a framework for consistency evaluation. The paper proposes two approaches to validate consistency: self-validation, and validation across multiple LLMs. We have carried out extensive experiments for several LLMs such as GPT4oMini, GPT3.5, Gemini, Cohere, and Llama3, on a security benchmark consisting of several cybersecurity questions: informational and situational. Our experiments corroborate the fact that even though these LLMs are being considered and/or already being used for several cybersecurity tasks today, they are often inconsistent in their responses, and thus are untrustworthy and unreliable for cybersecurity.
Related papers
- Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.
They are open-ended models trained on diverse data without being tailored for specific downstream tasks.
Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.
Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.
Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks.
We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities.
We evaluate multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama.
arXiv Detail & Related papers (2024-04-19T20:11:12Z) - An Insight into Security Code Review with LLMs: Capabilities, Obstacles and Influential Factors [9.309745288471374]
Security code review is a time-consuming and labor-intensive process.
Existing security analysis tools struggle with poor generalization, high false positive rates, and coarse detection granularity.
Large Language Models (LLMs) have been considered promising candidates for addressing those challenges.
arXiv Detail & Related papers (2024-01-29T17:13:44Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
This paper introduces TrustLLM, a comprehensive study of trustworthiness in large language models (LLMs)
We first propose a set of principles for trustworthy LLMs that span eight different dimensions.
Based on these principles, we establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics.
arXiv Detail & Related papers (2024-01-10T22:07:21Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
Large Language Models (LLMs) have revolutionized natural language understanding and generation.
This paper explores the intersection of LLMs with security and privacy.
arXiv Detail & Related papers (2023-12-04T16:25:18Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
This study investigates the substantial discrepancy in performance between multiple-choice questions and open-ended questions.
Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization.
arXiv Detail & Related papers (2023-11-10T08:01:23Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.