Contextual Thompson Sampling via Generation of Missing Data
- URL: http://arxiv.org/abs/2502.07064v1
- Date: Mon, 10 Feb 2025 21:57:00 GMT
- Title: Contextual Thompson Sampling via Generation of Missing Data
- Authors: Kelly W. Zhang, Tiffany Tianhui Cai, Hongseok Namkoong, Daniel Russo,
- Abstract summary: We introduce a framework for Thompson sampling contextual bandit algorithms.
Our algorithm treats uncertainty as stemming from missing, but potentially observable, future outcomes.
Inspired by this conceptualization, at each decision-time, our algorithm uses a generative model to impute missing future outcomes.
- Score: 11.713451719120707
- License:
- Abstract: We introduce a framework for Thompson sampling contextual bandit algorithms, in which the algorithm's ability to quantify uncertainty and make decisions depends on the quality of a generative model that is learned offline. Instead of viewing uncertainty in the environment as arising from unobservable latent parameters, our algorithm treats uncertainty as stemming from missing, but potentially observable, future outcomes. If these future outcomes were all observed, one could simply make decisions using an "oracle" policy fit on the complete dataset. Inspired by this conceptualization, at each decision-time, our algorithm uses a generative model to probabilistically impute missing future outcomes, fits a policy using the imputed complete dataset, and uses that policy to select the next action. We formally show that this algorithm is a generative formulation of Thompson Sampling and prove a state-of-the-art regret bound for it. Notably, our regret bound i) depends on the probabilistic generative model only through the quality of its offline prediction loss, and ii) applies to any method of fitting the "oracle" policy, which easily allows one to adapt Thompson sampling to decision-making settings with fairness and/or resource constraints.
Related papers
- Thompson Sampling for Infinite-Horizon Discounted Decision Processes [0.0]
We study the behavior of a sampling-based algorithm, called Thompson sampling.
By decomposing the standard (expected) regret, we develop a new metric, called the expected residual regret.
arXiv Detail & Related papers (2024-05-14T01:01:05Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
Planning under uncertainty can be mathematically formalized using partially observable Markov decision processes (POMDPs)
Finding an optimal plan for POMDPs can be computationally expensive and is feasible only for small tasks.
We derive a deterministic relationship between a simplified solution that is easier to obtain and the theoretically optimal one.
arXiv Detail & Related papers (2023-10-03T04:40:38Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - A Reinforcement Learning Approach to the Stochastic Cutting Stock
Problem [0.0]
We propose a formulation of the cutting stock problem as a discounted infinite-horizon decision process.
An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost.
arXiv Detail & Related papers (2021-09-20T14:47:54Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Doubly-Adaptive Thompson Sampling for Multi-Armed and Contextual Bandits [28.504921333436833]
We propose a variant of a Thompson sampling based algorithm that adaptively re-weighs the terms of a doubly robust estimator on the true mean reward of each arm.
The proposed algorithm matches the optimal (minimax) regret rate and its empirical evaluation in a semi-synthetic experiment.
We extend this approach to contextual bandits, where there are more sources of bias present apart from the adaptive data collection.
arXiv Detail & Related papers (2021-02-25T22:29:25Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
Randomized algorithms are used in many state-of-the-art solvers for constraint satisfaction problems (CSP) and Boolean satisfiability (SAT) problems.
Previous state-of-the-art methods directly try to predict a fixed parametric distribution that the input instance follows.
This new model achieves robust predictive performance in the low observation setting, as well as handling censored observations.
arXiv Detail & Related papers (2020-12-14T01:15:39Z) - Adaptive Combinatorial Allocation [77.86290991564829]
We consider settings where an allocation has to be chosen repeatedly, returns are unknown but can be learned, and decisions are subject to constraints.
Our model covers two-sided and one-sided matching, even with complex constraints.
arXiv Detail & Related papers (2020-11-04T15:02:59Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.