論文の概要: Explaining 3D Computed Tomography Classifiers with Counterfactuals
- arxiv url: http://arxiv.org/abs/2502.07156v1
- Date: Tue, 11 Feb 2025 00:44:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:54.584139
- Title: Explaining 3D Computed Tomography Classifiers with Counterfactuals
- Title(参考訳): 実測値を用いた3次元CT分類器の解説
- Authors: Joseph Paul Cohen, Louis Blankemeier, Akshay Chaudhari,
- Abstract要約: 2次元アプリケーションから3次元CTスキャンに拡張する。
限られたトレーニングサンプルや高いメモリ要求など,3Dデータに関連する課題に対処する。
- 参考スコア(独自算出の注目度): 5.782952470371709
- License:
- Abstract: Counterfactual explanations in medical imaging are critical for understanding the predictions made by deep learning models. We extend the Latent Shift counterfactual generation method from 2D applications to 3D computed tomography (CT) scans. We address the challenges associated with 3D data, such as limited training samples and high memory demands, by implementing a slice-based approach. This method leverages a 2D encoder trained on CT slices, which are subsequently combined to maintain 3D context. We demonstrate this technique on two models for clinical phenotype prediction and lung segmentation. Our approach is both memory-efficient and effective for generating interpretable counterfactuals in high-resolution 3D medical imaging.
- Abstract(参考訳): 医用画像における非現実的説明は、深層学習モデルによる予測を理解するために重要である。
2次元アプリケーションから3次元CTスキャンに拡張する。
我々は,スライスベースのアプローチを実装することで,限られたトレーニングサンプルや高メモリ要求といった3Dデータに関連する課題に対処する。
この方法はCTスライスで訓練された2Dエンコーダを利用し、3Dコンテキストを維持するために組み合わせる。
本手法を臨床表現型予測と肺分画の2つのモデルで実証する。
本手法は,高分解能3次元医用画像における解釈可能な偽物の生成に有効である。
関連論文リスト
- Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
クロスD Conv 演算はフーリエ領域における位相シフトを学習することで次元ギャップを橋渡しする。
本手法は2次元と3次元の畳み込み操作間のシームレスな重み移動を可能にする。
論文 参考訳(メタデータ) (2024-11-02T13:03:44Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - 3D Matting: A Soft Segmentation Method Applied in Computed Tomography [26.25446145993599]
CT、MRI、PETなどの3次元画像は、医用画像の分野では一般的であり、臨床診断において重要である。
セマンティック曖昧さは多くの医用画像ラベルの典型的な特徴である。
2次元医用画像では、画像マッチングによって生成された2次元マスクの代わりにソフトマスクを用いることで、病変を特徴づけることができる。
論文 参考訳(メタデータ) (2022-09-16T10:18:59Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
既存の3Dベースの手法は、トレーニング済みのモデルを下流のタスクに転送している。
彼らは3D医療イメージングのためのモデルを訓練するために大量のパラメータを要求します。
本稿では,2次元画像スライス形式で3次元容積画像を効果的にモデル化する,メディカルトランスフォーマーと呼ばれる新しい伝達学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-28T08:34:21Z) - Comparative Evaluation of 3D and 2D Deep Learning Techniques for
Semantic Segmentation in CT Scans [0.0]
本稿では,3次元CTスキャンにおける立体スタックを用いた深層学習手法を提案する。
本研究では,この3D手法と従来の2D深層学習手法とのセグメンテーション結果,コンテキスト情報保持,推論時間に基づく比較について述べる。
3D技術により、2D技術と比較して推論時間が5倍短縮されます。
論文 参考訳(メタデータ) (2021-01-19T13:23:43Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
本稿では,プロキシタスクの形式で,5種類の自己教師型手法の3次元バージョンを提案する。
提案手法は,未ラベルの3次元画像からニューラルネットワークの特徴学習を容易にし,専門家のアノテーションに必要なコストを削減することを目的としている。
開発したアルゴリズムは、3D Contrastive Predictive Coding, 3D Rotation Prediction, 3D Jigsaw puzzles, Relative 3D patch location, 3D Exemplar Networkである。
論文 参考訳(メタデータ) (2020-06-06T09:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。