論文の概要: Foreign-Object Detection in High-Voltage Transmission Line Based on Improved YOLOv8m
- arxiv url: http://arxiv.org/abs/2502.07175v1
- Date: Tue, 11 Feb 2025 01:58:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:53.218479
- Title: Foreign-Object Detection in High-Voltage Transmission Line Based on Improved YOLOv8m
- Title(参考訳): 改良YOLOv8mに基づく高電圧伝送線路における異物検出
- Authors: Zhenyue Wang, Guowu Yuan, Hao Zhou, Yi Ma, Yutang Ma,
- Abstract要約: 本稿では,伝送路上の異物検出のための改良型YOLOv8mモデルを提案する。
Yunnan Power Gridから収集したデータセット上で実験を行う。
- 参考スコア(独自算出の注目度): 19.080692737423693
- License:
- Abstract: The safe operation of high-voltage transmission lines ensures the power grid's security. Various foreign objects attached to the transmission lines, such as balloons, kites and nesting birds, can significantly affect the safe and stable operation of high-voltage transmission lines. With the advancement of computer vision technology, periodic automatic inspection of foreign objects is efficient and necessary. Existing detection methods have low accuracy because foreign objects at-tached to the transmission lines are complex, including occlusions, diverse object types, significant scale variations, and complex backgrounds. In response to the practical needs of the Yunnan Branch of China Southern Power Grid Co., Ltd., this paper proposes an improved YOLOv8m-based model for detecting foreign objects on transmission lines. Experiments are conducted on a dataset collected from Yunnan Power Grid. The proposed model enhances the original YOLOv8m by in-corporating a Global Attention Module (GAM) into the backbone to focus on occluded foreign objects, replacing the SPPF module with the SPPCSPC module to augment the model's multiscale feature extraction capability, and introducing the Focal-EIoU loss function to address the issue of high- and low-quality sample imbalances. These improvements accelerate model convergence and enhance detection accuracy. The experimental results demonstrate that our proposed model achieves a 2.7% increase in mAP_0.5, a 4% increase in mAP_0.5:0.95, and a 6% increase in recall.
- Abstract(参考訳): 高電圧送電線の安全運転は送電網の安全を確保する。
バルーン、カイト、営巣鳥などの送電線に付着する様々な異物は、高電圧送電線の安全かつ安定した運転に大きな影響を及ぼす可能性がある。
コンピュータビジョン技術の進歩により、外部物体の定期的自動検査が効率的かつ必要となる。
既存の検出方法は、伝送路に固定された異物は、閉塞物、多様な対象タイプ、大きなスケールのバリエーション、複雑な背景を含む複雑なため、精度が低い。
本報告では,中国南部電力株式会社雲南支店の実用的ニーズに応じて,伝送路における異物検出のためのYOLOv8mモデルを提案する。
Yunnan Power Gridから収集したデータセット上で実験を行う。
提案モデルでは,Global Attention Module (GAM) をバックボーンに組み込んで隠蔽された外部オブジェクトにフォーカスし,SPPPFモジュールをSPPCSPCモジュールに置き換えてマルチスケールの特徴抽出機能を強化し,高品質と低品質のサンプル不均衡問題に対処するためにFocal-EIoU損失関数を導入することにより,元のYOLOv8mを強化する。
これらの改良によりモデル収束が加速され、検出精度が向上する。
その結果,提案モデルではmAP_0.5が2.7%,mAP_0.5:0.95が4%,リコールが6%増加した。
関連論文リスト
- SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) は、多数の小さなオブジェクトを含むシナリオ用に設計されている。
SOD-YOLOv8は小さなオブジェクト検出を大幅に改善し、様々なメトリクスで広く使われているモデルを上回っている。
ダイナミックな現実世界の交通シーンでは、SOD-YOLOv8は様々な状況で顕著な改善を示した。
論文 参考訳(メタデータ) (2024-08-08T23:05:25Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
ディープフェイクは、最近、国民の間で重大な信頼問題とセキュリティ上の懸念を提起した。
ViT法はトランスの表現性を生かし,優れた検出性能を実現する。
この研究は、汎用的でパラメータ効率のよいViTベースのアプローチであるFace Forgery Detection (MoE-FFD)のためのMixture-of-Expertsモジュールを導入する。
論文 参考訳(メタデータ) (2024-04-12T13:02:08Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
長距離モデリングと線形効率の優れたマンバモデルが注目されている。
MambaADは、事前訓練されたエンコーダと(Locality-Enhanced State Space)LSSモジュールをマルチスケールで備えたMambaデコーダで構成されている。
提案したLSSモジュールは、並列カスケード(Hybrid State Space) HSSブロックとマルチカーネル畳み込み操作を統合し、長距離情報とローカル情報の両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-04-09T18:28:55Z) - Improved YOLOv5 Based on Attention Mechanism and FasterNet for Foreign Object Detection on Railway and Airway tracks [0.0]
本稿では,FasterNetを取り入れたYOLOv5アーキテクチャの改良と,鉄道や空港の滑走路における異物検出の促進を目的としたアテンション機構を提案する。
このデータセットは、外部オブジェクトターゲットの認識能力を改善することを目的としている。
論文 参考訳(メタデータ) (2024-03-13T13:07:14Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
このような脅威を検知し、対処するために、さまざまな侵入検出アプローチが提案されており、機械学習モデルは極めて効果的である。
我々は,専用ハードウェアアクセラレータを通じて,IDS機能を透過的に統合可能なFPGAベースのハイブリッドECUアプローチを提案する。
提案手法では,複数の攻撃データセットの平均精度が99%以上であり,検出レートは0.64%であった。
論文 参考訳(メタデータ) (2024-01-19T13:13:38Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
現在の最先端ディープラーニング(DL)に基づく損傷検出モデルは、複雑でノイズの多い環境では優れた特徴抽出能力を欠いていることが多い。
DenseSPH-YOLOv5は、DenseNetブロックをバックボーンに統合したリアルタイムDLベースの高性能損傷検出モデルである。
DenseSPH-YOLOv5は平均平均精度(mAP)が85.25%、F1スコアが81.18%、精度(P)が89.51%である。
論文 参考訳(メタデータ) (2023-03-07T22:53:36Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。