論文の概要: Graph RAG-Tool Fusion
- arxiv url: http://arxiv.org/abs/2502.07223v1
- Date: Tue, 11 Feb 2025 03:32:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:14.078634
- Title: Graph RAG-Tool Fusion
- Title(参考訳): Graph RAG-Tool Fusion
- Authors: Elias Lumer, Pradeep Honaganahalli Basavaraju, Myles Mason, James A. Burke, Vamse Kumar Subbiah,
- Abstract要約: Graph RAG-Tool Fusionは、すべての関連するツール(ノード)と、ツール知識グラフ内のネストされた依存関係(エッジ)をキャプチャするための、新しいプラグイン・アンド・プレイのアプローチである。
573のフィクションツールの新しいツール選択ベンチマークであるToolLinkOSについて紹介する。
我々は、Graph RAG-Tool FusionがToolLinkOSとToolSandboxベンチマークでそれぞれ71.7%と22.1%という絶対的な改善を達成したことを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS
- Abstract(参考訳): ツール知識ベースから関連ツールを選択するための検索強化生成(RAG)の最近の開発により、LLMエージェントは複雑なツール呼び出し機能を数百から数千の外部ツール、API、エージェント・アズ・ツールに拡張することができる。
しかしながら、従来のRAGベースのツール検索では、ツール間の構造的依存関係をキャプチャできないため、検索したツールの依存関係の取得精度が制限される。
例えば、ツールのベクタデータベースでは、"ストックティッカー"APIから"ストックティッカー"パラメータを"ストックティッカー"APIに必要としており、どちらもOSレベルのインターネット接続ツールに依存している。
本稿では、ベクトルベース検索の長所と効率的なグラフトラバーサルを組み合わせた新しいプラグイン・アンド・プレイアプローチであるGraph RAG-Tool Fusionを導入し、すべての関連するツール(ノード)と、事前に定義されたツール知識グラフ内の任意のネストされた依存関係(エッジ)をキャプチャする。
573のフィクションツールの新しいツール選択ベンチマークであるToolLinkOSについても紹介します。
我々は、Graph RAG-Tool FusionがToolLinkOSとToolSandboxベンチマークでそれぞれ71.7%と22.1%の絶対的な改善を達成したことを実証する(mAP@10)。
ToolLinkOSデータセットはhttps://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOSで利用可能である。
関連論文リスト
- Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases [0.0]
強化されたツール表現を格納するように設計されたツール知識ベース(ベクトルデータベース)であるToolshed Knowledge Basesを紹介する。
RAG-Tool Fusion(Advanced RAG-Tool Fusion)も提案する。
このアプローチでは,ToolEシングルツール,ToolEマルチツール,Seal-Toolsベンチマークデータセットの46%,56%,絶対的な改善を実現しています。
論文 参考訳(メタデータ) (2024-10-18T16:44:22Z) - Efficient and Scalable Estimation of Tool Representations in Vector Space [34.767193045989515]
ツール検索のための合成データを生成するためのフレームワークと,小型エンコーダモデルを用いた効率的なデータ駆動型ツール検索戦略を提案する。
ToolBankは、実際のユーザ利用を反映した、新しいツール検索データセットです。
これらの新しい方法により、ToolBenchデータセット上のRecall@Kで最大27.28、ToolBank上のRecall@Kで30.5の改善を実現しています。
論文 参考訳(メタデータ) (2024-09-02T19:39:24Z) - Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval [47.81307125613145]
Re-Invokeは、トレーニングなしで大規模ツールセットに効果的にスケールするために設計された教師なしツール検索手法である。
我々は、クエリ毎に最も関連性の高いツールを特定するために、意図に基づいて、新しいマルチビュー類似度ランキング戦略を採用する。
評価の結果、Re-Invokeはシングルツールとマルチツールの両方のシナリオにおいて、最先端の代替よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-03T22:49:27Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - ToolNet: Connecting Large Language Models with Massive Tools via Tool
Graph [43.95759808077083]
既存のテキスト内学習アプローチは、ツールを単純なテキスト記述のリストにフォーマットし、大きな言語モデルに入力する。
本稿では,トークン消費を適度に増加させ,ツールの数を数千にスケールアップするプラグイン・アンド・プレイ・フレームワークであるToolNetを提案する。
論文 参考訳(メタデータ) (2024-02-29T02:04:00Z) - AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls [30.792186243538037]
我々はAnyToolを紹介した。AnyToolは巨大な言語モデルエージェントで、ユーザクエリに対処する膨大なツールの利用に革命をもたらすように設計されている。
Rapid APIから16,000以上のAPIを使用し、これらのAPIのサブセットがクエリを解決できると仮定して運用しています。
AnyToolには,階層構造を持つAPIレトリバー,選択したAPI候補セットを使用したユーザクエリの解決を目的とした解決器,自己反映機構という,3つの要素が含まれている。
論文 参考訳(メタデータ) (2024-02-06T18:59:57Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use [79.87054552116443]
大規模言語モデル(LLM)は、その印象的な自然言語処理(NLP)能力のために大きな注目を集めている。
このベンチマークは、LLMがツールの使用意識を持ち、ツールを正しく選択できるかどうかを評価するためのものだ。
8つの人気のあるLCMを巻き込んだ実験を行い、その大半は依然として効果的にツールを選択するのに苦労していることがわかった。
論文 参考訳(メタデータ) (2023-10-04T19:39:26Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
オープンソースの大規模言語モデル(LLM)、例えばLLaMAは、ツール使用能力に大きく制限されている。
データ構築、モデルトレーニング、評価を含む汎用ツールであるToolLLMを紹介する。
ツール使用のためのインストラクションチューニングフレームワークであるToolBenchを,ChatGPTを使って自動構築する。
論文 参考訳(メタデータ) (2023-07-31T15:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。