Fairness in Agentic AI: A Unified Framework for Ethical and Equitable Multi-Agent System
- URL: http://arxiv.org/abs/2502.07254v2
- Date: Sun, 02 Mar 2025 08:56:31 GMT
- Title: Fairness in Agentic AI: A Unified Framework for Ethical and Equitable Multi-Agent System
- Authors: Rajesh Ranjan, Shailja Gupta, Surya Narayan Singh,
- Abstract summary: This paper introduces a novel framework where fairness is treated as a dynamic, emergent property of agent interactions.<n>The framework integrates fairness constraints, bias mitigation strategies, and incentive mechanisms to align autonomous agent behaviors with societal values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ensuring fairness in decentralized multi-agent systems presents significant challenges due to emergent biases, systemic inefficiencies, and conflicting agent incentives. This paper provides a comprehensive survey of fairness in multi-agent AI, introducing a novel framework where fairness is treated as a dynamic, emergent property of agent interactions. The framework integrates fairness constraints, bias mitigation strategies, and incentive mechanisms to align autonomous agent behaviors with societal values while balancing efficiency and robustness. Through empirical validation, we demonstrate that incorporating fairness constraints results in more equitable decision-making. This work bridges the gap between AI ethics and system design, offering a foundation for accountable, transparent, and socially responsible multi-agent AI systems.
Related papers
- Achieving Socio-Economic Parity through the Lens of EU AI Act [11.550643687258738]
Unfair treatment and discrimination are critical ethical concerns in AI systems.
The recent introduction of the EU AI Act establishes a unified legal framework to ensure legal certainty for AI innovation and investment.
We propose a novel fairness notion, Socio-Economic Parity (SEP), which incorporates Socio-Economic Status (SES) and promotes positive actions for underprivileged groups.
arXiv Detail & Related papers (2025-03-29T12:27:27Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Multi-Agent Risks from Advanced AI [90.74347101431474]
Multi-agent systems of advanced AI pose novel and under-explored risks.
We identify three key failure modes based on agents' incentives, as well as seven key risk factors.
We highlight several important instances of each risk, as well as promising directions to help mitigate them.
arXiv Detail & Related papers (2025-02-19T23:03:21Z) - Agentic AI: Expanding the Algorithmic Frontier of Creative Problem Solving [0.2209921757303168]
Agentic Artificial Intelligence (AI) systems are capable of autonomously pursuing goals, making decisions, and taking actions over extended periods.<n>This transition from advisory roles to proactive execution challenges existing legal, economic, and marketing frameworks.<n>We highlight gaps in liability attribution, intellectual property ownership, and informed consent when agentic AI systems enter into binding contracts or generate novel solutions.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOS is a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs)<n>It establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring.<n>By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance.
arXiv Detail & Related papers (2024-12-22T18:01:49Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Using Protected Attributes to Consider Fairness in Multi-Agent Systems [7.061167083587786]
Fairness in Multi-Agent Systems (MAS) depends on various factors, including the system's governing rules, the behaviour of the agents, and their characteristics.
We take inspiration from the work on algorithmic fairness, which addresses bias in machine learning-based decision-making.
We adapt fairness metrics from the algorithmic fairness literature to the multi-agent setting, where self-interested agents interact within an environment.
arXiv Detail & Related papers (2024-10-16T08:12:01Z) - Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing [0.0]
The European Union's Artificial Intelligence Act takes effect on 1 August 2024.
High-risk AI applications must adhere to stringent transparency and fairness standards.
We propose a novel framework, which combines the strengths of counterfactual fairness and peer comparison strategy.
arXiv Detail & Related papers (2024-08-05T15:35:34Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - Social Diversity Reduces the Complexity and Cost of Fostering Fairness [63.70639083665108]
We investigate the effects of interference mechanisms which assume incomplete information and flexible standards of fairness.
We quantify the role of diversity and show how it reduces the need for information gathering.
Our results indicate that diversity changes and opens up novel mechanisms available to institutions wishing to promote fairness.
arXiv Detail & Related papers (2022-11-18T21:58:35Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Strategyproof and Proportionally Fair Facility Location [77.16035689756859]
We focus on a simple, one-dimensional collective decision problem (often referred to as the facility location problem)
We analyze a hierarchy of proportionality-based fairness axioms of varying strength.
For each axiom, we characterize the family of mechanisms that satisfy the axiom and strategyproofness.
arXiv Detail & Related papers (2021-11-02T12:41:32Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.