Using Protected Attributes to Consider Fairness in Multi-Agent Systems
- URL: http://arxiv.org/abs/2410.12889v1
- Date: Wed, 16 Oct 2024 08:12:01 GMT
- Title: Using Protected Attributes to Consider Fairness in Multi-Agent Systems
- Authors: Gabriele La Malfa, Jie M. Zhang, Michael Luck, Elizabeth Black,
- Abstract summary: Fairness in Multi-Agent Systems (MAS) depends on various factors, including the system's governing rules, the behaviour of the agents, and their characteristics.
We take inspiration from the work on algorithmic fairness, which addresses bias in machine learning-based decision-making.
We adapt fairness metrics from the algorithmic fairness literature to the multi-agent setting, where self-interested agents interact within an environment.
- Score: 7.061167083587786
- License:
- Abstract: Fairness in Multi-Agent Systems (MAS) has been extensively studied, particularly in reward distribution among agents in scenarios such as goods allocation, resource division, lotteries, and bargaining systems. Fairness in MAS depends on various factors, including the system's governing rules, the behaviour of the agents, and their characteristics. Yet, fairness in human society often involves evaluating disparities between disadvantaged and privileged groups, guided by principles of Equality, Diversity, and Inclusion (EDI). Taking inspiration from the work on algorithmic fairness, which addresses bias in machine learning-based decision-making, we define protected attributes for MAS as characteristics that should not disadvantage an agent in terms of its expected rewards. We adapt fairness metrics from the algorithmic fairness literature -- namely, demographic parity, counterfactual fairness, and conditional statistical parity -- to the multi-agent setting, where self-interested agents interact within an environment. These metrics allow us to evaluate the fairness of MAS, with the ultimate aim of designing MAS that do not disadvantage agents based on protected attributes.
Related papers
- Properties of fairness measures in the context of varying class imbalance and protected group ratios [15.942660279740727]
We study the general properties of fairness measures for changing class and protected group proportions.
We also measure how the probability of achieving perfect fairness changes for varying class imbalance ratios.
Our results show that measures such as Equal Opportunity and Positive Predictive Parity are more sensitive to changes in class imbalance than Accuracy Equality.
arXiv Detail & Related papers (2024-11-13T08:18:03Z) - Social Choice for Heterogeneous Fairness in Recommendation [9.753088666705985]
Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders.
Previous work has often been limited by fixed, single-objective definitions of fairness.
Our work approaches recommendation fairness from the standpoint of computational social choice.
arXiv Detail & Related papers (2024-10-06T17:01:18Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - Fair Ranking with Noisy Protected Attributes [25.081136190260015]
We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed.
We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes.
arXiv Detail & Related papers (2022-11-30T15:22:28Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Unfairness Despite Awareness: Group-Fair Classification with Strategic
Agents [37.31138342300617]
We show that strategic agents may possess both the ability and the incentive to manipulate an observed feature vector in order to attain a more favorable outcome.
We further demonstrate that both the increased selectiveness of the fair classifier, and consequently the loss of fairness, arises when performing fair learning on domains in which the advantaged group is overrepresented.
arXiv Detail & Related papers (2021-12-06T02:42:43Z) - Statistical discrimination in learning agents [64.78141757063142]
Statistical discrimination emerges in agent policies as a function of both the bias in the training population and of agent architecture.
We show that less discrimination emerges with agents that use recurrent neural networks, and when their training environment has less bias.
arXiv Detail & Related papers (2021-10-21T18:28:57Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Distributive Justice and Fairness Metrics in Automated Decision-making:
How Much Overlap Is There? [0.0]
We show that metrics implementing equality of opportunity only apply when resource allocations are based on deservingness, but fail when allocations should reflect concerns about egalitarianism, sufficiency, and priority.
We argue that by cleanly distinguishing between prediction tasks and decision tasks, research on fair machine learning could take better advantage of the rich literature on distributive justice.
arXiv Detail & Related papers (2021-05-04T12:09:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.