MIGT: Memory Instance Gated Transformer Framework for Financial Portfolio Management
- URL: http://arxiv.org/abs/2502.07280v1
- Date: Tue, 11 Feb 2025 05:54:42 GMT
- Title: MIGT: Memory Instance Gated Transformer Framework for Financial Portfolio Management
- Authors: Fengchen Gu, Angelos Stefanidis, Ángel García-Fernández, Jionglong Su, Huakang Li,
- Abstract summary: This study introduces a new framework utilizing the Memory Instance Gated Transformer (MIGT) for effective portfolio management.
Our approach aims to maximize investment returns while ensuring the learning process's stability and reducing outlier impacts.
- Score: 0.1398098625978622
- License:
- Abstract: Deep reinforcement learning (DRL) has been applied in financial portfolio management to improve returns in changing market conditions. However, unlike most fields where DRL is widely used, the stock market is more volatile and dynamic as it is affected by several factors such as global events and investor sentiment. Therefore, it remains a challenge to construct a DRL-based portfolio management framework with strong return capability, stable training, and generalization ability. This study introduces a new framework utilizing the Memory Instance Gated Transformer (MIGT) for effective portfolio management. By incorporating a novel Gated Instance Attention module, which combines a transformer variant, instance normalization, and a Lite Gate Unit, our approach aims to maximize investment returns while ensuring the learning process's stability and reducing outlier impacts. Tested on the Dow Jones Industrial Average 30, our framework's performance is evaluated against fifteen other strategies using key financial metrics like the cumulative return and risk-return ratios (Sharpe, Sortino, and Omega ratios). The results highlight MIGT's advantage, showcasing at least a 9.75% improvement in cumulative returns and a minimum 2.36% increase in risk-return ratios over competing strategies, marking a significant advancement in DRL for portfolio management.
Related papers
- MILLION: A General Multi-Objective Framework with Controllable Risk for Portfolio Management [16.797109778036862]
We propose a general Multi-objectIve framework with controLLableIsk for pOrtfolio maMILLION.
In the risk control phase, we propose two methods, i.e., portfolio adaption and portfolio improvement.
The results demonstrate the effectiveness and efficiency of the proposed framework.
arXiv Detail & Related papers (2024-12-04T05:19:34Z) - Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer [1.4061979259370274]
We implement the PolyModel theory for constructing a hedge fund portfolio.
We create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR.
We also employ the latest deep learning techniques (iTransformer) to capture the upward trend.
arXiv Detail & Related papers (2024-08-06T17:55:58Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
As a model-free algorithm, deep reinforcement learning (DRL) agent learns and makes decisions by interacting with the environment in an unsupervised way.
We propose a hybrid portfolio optimization model combining the DRL agent and the Black-Litterman (BL) model.
Our DRL agent significantly outperforms various comparison portfolio choice strategies and alternative DRL frameworks by at least 42% in terms of accumulated return.
arXiv Detail & Related papers (2024-02-23T16:01:37Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
We propose Weight Averaged Reward Models (WARM) to mitigate reward hacking.
Experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions.
arXiv Detail & Related papers (2024-01-22T18:27:08Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
A major challenge of reinforcement learning (RL) in real-world applications is the variation between environments, tasks or clients.
Standard MRL methods optimize the average return over tasks, but often suffer from poor results in tasks of high risk or difficulty.
In this work, we define a robust MRL objective with a controlled level.
The data inefficiency is addressed via the novel Robust Meta RL algorithm (RoML)
arXiv Detail & Related papers (2023-01-26T14:54:39Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - MetaTrader: An Reinforcement Learning Approach Integrating Diverse
Policies for Portfolio Optimization [17.759687104376855]
We propose a novel two-stage-based approach for portfolio management.
In the first stage, incorporates an imitation learning into the reinforcement learning framework.
In the second stage, learns a meta-policy to recognize the market conditions and decide on the most proper learned policy to follow.
arXiv Detail & Related papers (2022-09-01T07:58:06Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z) - A General Framework on Enhancing Portfolio Management with Reinforcement
Learning [3.6985496077087743]
Portfolio management concerns continuous reallocation of funds and assets across financial instruments to meet the desired returns to risk profile.
Deep reinforcement learning (RL) has gained increasing interest in portfolio management, where RL agents are trained base on financial data to optimize the asset reallocation process.
We propose a general RL framework for asset management that enables continuous asset weights, short selling and making decisions with relevant features.
arXiv Detail & Related papers (2019-11-26T23:41:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.