Hybrid classical-quantum communication networks
- URL: http://arxiv.org/abs/2502.07298v1
- Date: Tue, 11 Feb 2025 06:53:14 GMT
- Title: Hybrid classical-quantum communication networks
- Authors: Joseph M. Lukens, Nicholas A. Peters, Bing Qi,
- Abstract summary: We review ongoing research endeavors aimed at integrating quantum communication protocols, such as quantum key distribution, into existing lightwave networks.
This approach offers the substantial advantage of reducing implementation costs by allowing classical and quantum communication protocols to share optical fibers, communication hardware, and other network control resources.
Our vision for the future of the Internet is that of heterogeneous communication networks thoughtfully designed for the seamless support of both classical and quantum communications.
- Score: 0.44115657413792375
- License:
- Abstract: Over the past several decades, the proliferation of global classical communication networks has transformed various facets of human society. Concurrently, quantum networking has emerged as a dynamic field of research, driven by its potential applications in distributed quantum computing, quantum sensor networks, and secure communications. This prompts a fundamental question: rather than constructing quantum networks from scratch, can we harness the widely available classical fiber-optic infrastructure to establish hybrid quantum-classical networks? This paper aims to provide a comprehensive review of ongoing research endeavors aimed at integrating quantum communication protocols, such as quantum key distribution, into existing lightwave networks. This approach offers the substantial advantage of reducing implementation costs by allowing classical and quantum communication protocols to share optical fibers, communication hardware, and other network control resources, arguably the most pragmatic solution in the near term. In the long run, classical communication will also reap the rewards of innovative quantum communication technologies, such as quantum memories and repeaters. Accordingly, our vision for the future of the Internet is that of heterogeneous communication networks thoughtfully designed for the seamless support of both classical and quantum communications.
Related papers
- An Operational Framework for Nonclassicality in Quantum Communication Networks [9.312605205492458]
entanglement and quantum communication offer significant advantages in distributed information processing.
We develop an operational framework for realizing these enhancements in resource-constrained quantum networks.
In all cases, we find that entanglement-assisted communication, both classical and quantum, leads to nonclassicality.
arXiv Detail & Related papers (2024-03-05T14:07:37Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Software Architecture for Operation and Use of Quantum Communications
Networks [0.0]
Quantum Communications Networks using qubits, such as state superposition, no-cloning and entanglement, can enable the exchange of information in a secure manner.
New innovations enable the use of optical repeaters as well as multi-cast communication in the networks.
Quantum networks need to be integrated into the ecosystem of currently deployed classical networks.
arXiv Detail & Related papers (2023-05-31T16:40:45Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Analytical Methods for High-Rate Global Quantum Networks [0.0]
Ground-based quantum networks employ photons as information carriers through optical-fibres.
We introduce a large-scale quantum network model called weakly-regular architectures.
This allows us to investigate the effectiveness of large-scale networks with consistent connective properties.
arXiv Detail & Related papers (2021-04-21T18:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.