Towards a Quantum-classical Augmented Network
- URL: http://arxiv.org/abs/2505.18282v1
- Date: Fri, 23 May 2025 18:17:07 GMT
- Title: Towards a Quantum-classical Augmented Network
- Authors: Nitin Jha, Abhishek Parakh, Mahadevan Subramaniam,
- Abstract summary: We propose a change in the structure of the HTTP protocol such that it can carry both quantum and classical payload.<n>We implement logistic regression, CNN, LSTM, and BiLSTM models to classify the privacy label for outgoing communications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past decade, several small-scale quantum key distribution networks have been established. However, the deployment of large-scale quantum networks depends on the development of quantum repeaters, quantum channels, quantum memories, and quantum network protocols. To improve the security of existing networks and adopt currently feasible quantum technologies, the next step is to augment classical networks with quantum devices, properties, and phenomena. To achieve this, we propose a change in the structure of the HTTP protocol such that it can carry both quantum and classical payload. This work lays the foundation for dividing one single network packet into classical and quantum payloads depending on the privacy needs. We implement logistic regression, CNN, LSTM, and BiLSTM models to classify the privacy label for outgoing communications. This enables reduced utilization of quantum resources allowing for a more efficient secure quantum network design. Experimental results using the proposed methods are presented.
Related papers
- Quantum-Aware Network Planning and Integration [0.0]
There is a need for having quantum signals coexist with classical traffic over the same physical medium.<n>Efforts are now underway to integrate QKD at the network level.
arXiv Detail & Related papers (2025-05-08T15:41:34Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Wrapper Networking [0.8431877864777444]
Quantum wrapper net- works (QWNs) enable the transparent and interoperable transportation of quantum wrapper datagrams.
QWNs can utilize the common network control and management for performance monitoring on the classical header and infer the quantum channel quality.
arXiv Detail & Related papers (2023-04-30T22:24:45Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.