FedAPA: Server-side Gradient-Based Adaptive Personalized Aggregation for Federated Learning on Heterogeneous Data
- URL: http://arxiv.org/abs/2502.07456v2
- Date: Sat, 15 Feb 2025 15:40:47 GMT
- Title: FedAPA: Server-side Gradient-Based Adaptive Personalized Aggregation for Federated Learning on Heterogeneous Data
- Authors: Yuxia Sun, Aoxiang Sun, Siyi Pan, Zhixiao Fu, Jingcai Guo,
- Abstract summary: FedAPA is a novel PFL method featuring a server-side, gradient-based adaptive aggregation strategy to generate personalized models.
FedAPA guarantees theoretical convergence and achieves superior accuracy and computational efficiency compared to 10 PFL competitors across three datasets.
- Score: 5.906966694759679
- License:
- Abstract: Personalized federated learning (PFL) tailors models to clients' unique data distributions while preserving privacy. However, existing aggregation-weight-based PFL methods often struggle with heterogeneous data, facing challenges in accuracy, computational efficiency, and communication overhead. We propose FedAPA, a novel PFL method featuring a server-side, gradient-based adaptive aggregation strategy to generate personalized models, by updating aggregation weights based on gradients of client-parameter changes with respect to the aggregation weights in a centralized manner. FedAPA guarantees theoretical convergence and achieves superior accuracy and computational efficiency compared to 10 PFL competitors across three datasets, with competitive communication overhead.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian
Approach [42.59649764999974]
Federated learning aims to infer a shared model from private and decentralized data stored locally by multiple clients.
We propose a PFL algorithm named PAC-PFL for learning probabilistic models within a PAC-Bayesian framework.
Our algorithm collaboratively learns a shared hyper-posterior and regards each client's posterior inference as the step personalization.
arXiv Detail & Related papers (2024-01-16T13:30:37Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment [20.72576355616359]
We propose a new PFL algorithm called emphFedDWA (Federated Learning with Dynamic Weight Adjustment) to address the problem.
FedDWA computes personalized aggregation weights based on collected models from clients.
We conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-10T13:12:07Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - User-Centric Federated Learning: Trading off Wireless Resources for
Personalization [18.38078866145659]
In Federated Learning (FL) systems, Statistical Heterogeneousness increases the algorithm convergence time and reduces the generalization performance.
To tackle the above problems without violating the privacy constraints that FL imposes, personalized FL methods have to couple statistically similar clients without directly accessing their data.
In this work, we design user-centric aggregation rules that are based on readily available gradient information and are capable of producing personalized models for each FL client.
Our algorithm outperforms popular personalized FL baselines in terms of average accuracy, worst node performance, and training communication overhead.
arXiv Detail & Related papers (2023-04-25T15:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.