論文の概要: Quantitative evaluation of unsupervised clustering algorithms for dynamic total-body PET image analysis
- arxiv url: http://arxiv.org/abs/2502.07511v1
- Date: Tue, 11 Feb 2025 12:28:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:32.448288
- Title: Quantitative evaluation of unsupervised clustering algorithms for dynamic total-body PET image analysis
- Title(参考訳): 動的全体PET画像解析のための教師なしクラスタリングアルゴリズムの定量的評価
- Authors: Oona Rainio, Maria K. Jaakkola, Riku Klén,
- Abstract要約: 冠動脈疾患と診断された30例の患者から収集した15ドルO-water PET画像を用いて検討した。
クラスタリングアルゴリズムを定量的に評価するために,脳,右心室,右腎,右肺葉下部,膀胱から曲線が取られるか否かに基づいて,各画像から5000個のTACを分類した。
以上の結果から, GMM, FCM, ICAとミニバッチK平均値の組み合わせでTACを89%, 83%, 81%と分類した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Background. Recently, dynamic total-body positron emission tomography (PET) imaging has become possible due to new scanner devices. While clustering algorithms have been proposed for PET analysis already earlier, there is still little research systematically evaluating these algorithms for processing of dynamic total-body PET images. Materials and methods. Here, we compare the performance of 15 unsupervised clustering methods, including K-means either by itself or after principal component analysis (PCA) or independent component analysis (ICA), Gaussian mixture model (GMM), fuzzy c-means (FCM), agglomerative clustering, spectral clustering, and several newer clustering algorithms, for classifying time activity curves (TACs) in dynamic PET images. We use dynamic total-body $^{15}$O-water PET images collected from 30 patients with suspected or confirmed coronary artery disease. To evaluate the clustering algorithms in a quantitative way, we use them to classify 5000 TACs from each image based on whether the curve is taken from brain, right heart ventricle, right kidney, lower right lung lobe, or urinary bladder. Results. According to our results, the best methods are GMM, FCM, and ICA combined with mini batch K-means, which classified the TACs with a median accuracies of 89\%, 83\%, and 81\%, respectively, in a processing time of half a second or less on average for each image. Conclusion. GMM, FCM, and ICA with mini batch K-means show promise for dynamic total-body PET analysis.
- Abstract(参考訳): 背景。
近年,新しいスキャナー装置により,全身ポジトロン断層撮影(PET)が可能になった。
PET解析にはすでにクラスタリングアルゴリズムが提案されているが、動的な全体PET画像の処理にこれらのアルゴリズムを体系的に評価する研究はほとんどない。
材料と方法。
そこで本研究では,K-means自体やPCA後,独立成分分析(ICA),ガウス混合モデル(GMM),ファジィc-means(FCM),凝集クラスタリング,スペクトルクラスタリング,さらに新しいクラスタリングアルゴリズムなど15種類の非教師なしクラスタリング手法の性能を比較し,動的PET画像における時間活動曲線(TAC)の分類を行った。
冠状動脈疾患と診断された30例の患者から採取した動的全体$^{15}$O-water PET画像を用いて検討した。
クラスタリングアルゴリズムを定量的に評価するために,脳,右心室,右腎,右肺葉下部,膀胱から曲線が取られるか否かに基づいて,各画像から5000個のTACを分類した。
結果。
GMM, FCM, ICAとミニバッチK平均値の組み合わせで, 各画像の平均処理時間は平均半秒以下で, TACを89\%, 83\%, 81\%と分類した。
結論。
ミニバッチK平均のGMM, FCM, ICAは, 動的全体PET解析の可能性を示唆している。
関連論文リスト
- Deep Ensembling with Multimodal Image Fusion for Efficient Classification of Lung Cancer [0.07366405857677226]
この研究で使用されるデータは、CT(Computed Tomography)とPET(Positron Emission Tomography)画像である。
提案手法は,主成分分析(PCA)とオートエンコーダを用いてPETとCT画像の融合を実現する。
新しいアンサンブルベースの分類器であるDeep Ensembled Multimodal Fusion (DEMF) は、サンプル画像の分類に多数決を採用した。
論文 参考訳(メタデータ) (2025-01-31T13:24:00Z) - Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
低線量スキャンから高画質画像を再構成するためのCycle-DCN(Cycle-versa Adrial Denoising Convolutional Network)を提案する。
1,224名の患者から得られた生のPET脳データからなる大規模なデータセットを用いて実験を行った。
サイクルDCNは平均ピーク信号対雑音比(PSNR)、SSIM、正規化ルート平均角誤差(NRMSE)を3つの線量レベルで改善する。
論文 参考訳(メタデータ) (2024-10-31T04:34:28Z) - 3D Lymphoma Segmentation on PET/CT Images via Multi-Scale Information Fusion with Cross-Attention [6.499725732124126]
本研究は,びまん性大細胞型B細胞リンパ腫(DLBCL)の正確な分節法を開発することを目的とする。
シフトウインドウ変換器とマルチスケール情報融合(MSIF)モジュールを用いた3次元デュアルブランチエンコーダセグメンテーション法を提案する。
このモデルは5倍のクロスバリデーションを用いて165名のDLBCL患者のデータセットを用いて訓練および検証を行った。
論文 参考訳(メタデータ) (2024-02-04T05:25:12Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
本稿では、新型コロナウイルス患者の感染症領域を抽出するためのドメイン知識に基づくパイプラインを提案する。
感染の重症度は、3つの機械学習モデルのアンサンブルを使用して異なるカテゴリに分類される。
提案システムは,AI-Enabled Medical Image Analysis WorkshopとCOVID-19診断コンペティションの検証データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-03-13T13:59:47Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
本研究の目的は, 各種密度増強肺異常に対して頑健な完全自動セグメンテーションアルゴリズムを開発することである。
急性肺障害を患うヒトの左肺と右肺に特異的にラベル付けされた肺と非特異的にラベル付けされた肺の両方を1つのニューラルネットワークのトレーニングに組み込んだ多形性訓練手法が提案されている。
結果として生じるネットワークは、ヒトの左右の肺領域を、びまん性オパーシフィケーションと凝縮を伴わずに予測することを目的としている。
論文 参考訳(メタデータ) (2020-10-16T18:25:59Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。