Nature Language Model: Deciphering the Language of Nature for Scientific Discovery
- URL: http://arxiv.org/abs/2502.07527v2
- Date: Thu, 06 Mar 2025 12:34:23 GMT
- Title: Nature Language Model: Deciphering the Language of Nature for Scientific Discovery
- Authors: Yingce Xia, Peiran Jin, Shufang Xie, Liang He, Chuan Cao, Renqian Luo, Guoqing Liu, Yue Wang, Zequn Liu, Yuan-Jyue Chen, Zekun Guo, Yeqi Bai, Pan Deng, Yaosen Min, Ziheng Lu, Hongxia Hao, Han Yang, Jielan Li, Chang Liu, Jia Zhang, Jianwei Zhu, Ran Bi, Kehan Wu, Wei Zhang, Kaiyuan Gao, Qizhi Pei, Qian Wang, Xixian Liu, Yanting Li, Houtian Zhu, Yeqing Lu, Mingqian Ma, Zun Wang, Tian Xie, Krzysztof Maziarz, Marwin Segler, Zhao Yang, Zilong Chen, Yu Shi, Shuxin Zheng, Lijun Wu, Chen Hu, Peggy Dai, Tie-Yan Liu, Haiguang Liu, Tao Qin,
- Abstract summary: Foundation models have revolutionized natural language processing and artificial intelligence.<n>We introduce Nature Language Model (NatureLM), a sequence-based science foundation model for scientific discovery.
- Score: 105.55751854768297
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, RNA and even cells. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) top performance across different domains, matching or surpassing state-of-the-art specialist models. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
Related papers
- UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.
We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.
We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - MOLLM: Multi-Objective Large Language Model for Molecular Design -- Optimizing with Experts [3.9194654197529784]
Molecular design plays a critical role in advancing fields such as drug discovery, materials science, and chemical engineering.
This work introduces the Multi-Objective Large Language Model for Molecular Design (MOLLM), a novel framework that combines domain-specific knowledge with the adaptability of Large Language Models.
arXiv Detail & Related papers (2025-02-18T13:25:00Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - nach0: Multimodal Natural and Chemical Languages Foundation Model [7.815497069231599]
This paper introduces a new foundation model, nach0, capable of solving various chemical and biological tasks.
nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings.
arXiv Detail & Related papers (2023-11-21T07:56:30Z) - DARWIN Series: Domain Specific Large Language Models for Natural Science [20.864698325126735]
We present DARWIN, a series of tailored LLMs for natural science, mainly in physics, chemistry, and material science.
We fine-tuned the models using over 60,000 instruction data points, emphasizing factual correctness.
DARWIN series not only achieves state-of-the-art results on various scientific tasks but also diminishes reliance on closed-source AI models.
arXiv Detail & Related papers (2023-08-25T01:40:48Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
We propose the conversational molecular design, a novel task adopting natural language for describing and editing target molecules.
To better accomplish this task, we design ChatMol, a knowledgeable and versatile generative pre-trained model, enhanced by injecting experimental property information.
arXiv Detail & Related papers (2023-06-21T02:05:48Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGen is a pre-trained molecular language model tailored specifically for molecule generation.
It internalizes structural and grammatical insights through the reconstruction of over 100 million molecular SELFIES.
Our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences.
arXiv Detail & Related papers (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.