Instance-dependent Early Stopping
- URL: http://arxiv.org/abs/2502.07547v1
- Date: Tue, 11 Feb 2025 13:34:09 GMT
- Title: Instance-dependent Early Stopping
- Authors: Suqin Yuan, Runqi Lin, Lei Feng, Bo Han, Tongliang Liu,
- Abstract summary: We propose an Instance-dependent Early Stopping (IES) method that adapts the early stopping mechanism from the entire training set to the instance level.
IES considers an instance as mastered if the second-order differences of its loss value remain within a small range around zero.
IES can reduce backpropagation instances by 10%-50% while maintaining or even slightly improving the test accuracy and transfer learning performance of a model.
- Score: 57.912273923450726
- License:
- Abstract: In machine learning practice, early stopping has been widely used to regularize models and can save computational costs by halting the training process when the model's performance on a validation set stops improving. However, conventional early stopping applies the same stopping criterion to all instances without considering their individual learning statuses, which leads to redundant computations on instances that are already well-learned. To further improve the efficiency, we propose an Instance-dependent Early Stopping (IES) method that adapts the early stopping mechanism from the entire training set to the instance level, based on the core principle that once the model has mastered an instance, the training on it should stop. IES considers an instance as mastered if the second-order differences of its loss value remain within a small range around zero. This offers a more consistent measure of an instance's learning status compared with directly using the loss value, and thus allows for a unified threshold to determine when an instance can be excluded from further backpropagation. We show that excluding mastered instances from backpropagation can increase the gradient norms, thereby accelerating the decrease of the training loss and speeding up the training process. Extensive experiments on benchmarks demonstrate that IES method can reduce backpropagation instances by 10%-50% while maintaining or even slightly improving the test accuracy and transfer learning performance of a model.
Related papers
- The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.
We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.
We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - An Efficient Replay for Class-Incremental Learning with Pre-trained Models [0.0]
In class-incremental learning, the steady state among the weight guided by each class center is disrupted, which is significantly correlated with forgetting.
We propose a new method to overcoming forgetting.
arXiv Detail & Related papers (2024-08-15T11:26:28Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - Dropout Reduces Underfitting [85.61466286688385]
In this study, we demonstrate that dropout can also mitigate underfitting when used at the start of training.
We find dropout reduces the directional variance of gradients across mini-batches and helps align the mini-batch gradients with the entire dataset's gradient.
Our findings lead us to a solution for improving performance in underfitting models - early dropout: dropout is applied only during the initial phases of training, and turned off afterwards.
arXiv Detail & Related papers (2023-03-02T18:59:15Z) - When does loss-based prioritization fail? [18.982933391138268]
We show that loss-based acceleration methods degrade in scenarios with noisy and corrupted data.
Measures of example difficulty need to correctly separate out noise from other types of challenging examples.
arXiv Detail & Related papers (2021-07-16T07:23:15Z) - Predicting Training Time Without Training [120.92623395389255]
We tackle the problem of predicting the number of optimization steps that a pre-trained deep network needs to converge to a given value of the loss function.
We leverage the fact that the training dynamics of a deep network during fine-tuning are well approximated by those of a linearized model.
We are able to predict the time it takes to fine-tune a model to a given loss without having to perform any training.
arXiv Detail & Related papers (2020-08-28T04:29:54Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
We propose an incremental learning method for end-to-end Automatic Speech Recognition (ASR)
We design a novel explainability-based knowledge distillation for ASR models, which is combined with a response-based knowledge distillation to maintain the original model's predictions and the "reason" for the predictions.
Results on a multi-stage sequential training task show that our method outperforms existing ones in mitigating forgetting.
arXiv Detail & Related papers (2020-05-11T08:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.