HGTUL: A Hypergraph-based Model For Trajectory User Linking
- URL: http://arxiv.org/abs/2502.07549v1
- Date: Tue, 11 Feb 2025 13:39:35 GMT
- Title: HGTUL: A Hypergraph-based Model For Trajectory User Linking
- Authors: Fengjie Chang, Xinning Zhu, Zheng Hu, Yang Qin,
- Abstract summary: Tray User Linking (TUL) links anonymous trajectories with users who generate them.
We propose a novel HyperGraph-based multi-perspective Trajectory User Linking model (HGTUL)
- Score: 2.9945319641858985
- License:
- Abstract: Trajectory User Linking (TUL), which links anonymous trajectories with users who generate them, plays a crucial role in modeling human mobility. Despite significant advancements in this field, existing studies primarily neglect the high-order inter-trajectory relationships, which represent complex associations among multiple trajectories, manifested through multi-location co-occurrence patterns emerging when trajectories intersect at various Points of Interest (POIs). Furthermore, they also overlook the variable influence of POIs on different trajectories, as well as the user class imbalance problem caused by disparities in user activity levels and check-in frequencies. To address these limitations, we propose a novel HyperGraph-based multi-perspective Trajectory User Linking model (HGTUL). Our model learns trajectory representations from both relational and spatio-temporal perspectives: (1) it captures high-order associations among trajectories by constructing a trajectory hypergraph and leverages a hypergraph attention network to learn the variable impact of POIs on trajectories; (2) it models the spatio-temporal characteristics of trajectories by incorporating their temporal and spatial information into a sequential encoder. Moreover, we design a data balancing method to effectively address the user class imbalance problem and experimentally validate its significance in TUL. Extensive experiments on three real-world datasets demonstrate that HGTUL outperforms state-of-the-art baselines, achieving improvements of 2.57%~20.09% and 5.68%~26.00% in ACC@1 and Macro-F1 metrics, respectively.
Related papers
- Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency.
We propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data.
Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings.
arXiv Detail & Related papers (2024-02-22T10:19:34Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Automated Spatio-Temporal Graph Contrastive Learning [18.245433428868775]
We develop an automated-temporal augmentation scheme with a parameterized contrastive view generator.
AutoST can adapt to the heterogeneous graph with multi-view semantics well preserved.
Experiments for three downstream-temporal mining tasks on several real-world datasets demonstrate the significant performance gain.
arXiv Detail & Related papers (2023-05-06T03:52:33Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Mutual Distillation Learning Network for Trajectory-User Linking [30.954285341714]
Trajectory-User Linking (TUL) has been a challenging problem due to the sparsity in check-in mobility data.
We propose a novel Mutual distillation learning network to solve the TUL problem for sparse check-in mobility data, named MainTUL.
arXiv Detail & Related papers (2022-05-08T03:50:37Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - DetectorNet: Transformer-enhanced Spatial Temporal Graph Neural Network
for Traffic Prediction [4.302265301004301]
Detectors with high coverage have direct and far-reaching benefits for road users in route planning and avoiding traffic congestion.
utilizing these data presents unique challenges including: the dynamic temporal correlation, and the dynamic spatial correlation caused by changes in road conditions.
We propose DetectorNet enhanced by Transformer to address these challenges.
arXiv Detail & Related papers (2021-10-19T03:47:38Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
We propose an unsupervised neural approach for mobility behavior clustering, called Deep Embedded TrajEctor ClusTering network (DETECT)
DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality.
In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$means) to be applied.
arXiv Detail & Related papers (2020-03-03T06:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.