Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning
- URL: http://arxiv.org/abs/2502.07560v2
- Date: Mon, 17 Feb 2025 12:57:42 GMT
- Title: Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning
- Authors: Fangwen Wu, Lechao Cheng, Shengeng Tang, Xiaofeng Zhu, Chaowei Fang, Dingwen Zhang, Meng Wang,
- Abstract summary: Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones.
Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown.
We propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration.
- Score: 51.177789437682954
- License:
- Abstract: Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones. Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown. To address this, our study reveals that the gap in feature distribution between novel and existing tasks is primarily driven by differences in mean and covariance moments. Building on this insight, we propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration. Specifically, we calculate each class's mean by averaging its sample embeddings and estimate task shifts using weighted embedding changes based on their proximity to the previous mean, effectively capturing mean shifts for all learned classes with each new task. We also apply Mahalanobis distance constraint for covariance calibration, aligning class-specific embedding covariances between old and current networks to mitigate the covariance shift. Additionally, we integrate a feature-level self-distillation approach to enhance generalization. Comprehensive experiments on commonly used datasets demonstrate the effectiveness of our approach. The source code is available at \href{https://github.com/fwu11/MACIL.git}{https://github.com/fwu11/MACIL.git}.
Related papers
- Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning [0.3281128493853064]
We tackle the problem of training a model on a sequence of tasks without access to past data.
Existing methods represent classes as Gaussian distributions in the feature extractor's latent space.
We propose AdaGauss -- a novel method that adapts covariance matrices from task to task.
arXiv Detail & Related papers (2024-09-26T20:18:14Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
We propose a novel incremental regularisation approach called Margin Dampening and Cascaded Scaling.
The first combines a soft constraint and a knowledge distillation approach to preserve past knowledge while allowing forgetting new patterns.
We empirically show that our approach performs well on multiple benchmarks well-established baselines.
arXiv Detail & Related papers (2024-02-02T09:33:07Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks.
Recent approaches to incrementally learning the classifier by freezing the feature extractor after the first task have gained much attention.
We explore prototypical networks for CIL, which generate new class prototypes using the frozen feature extractor and classify the features based on the Euclidean distance to the prototypes.
arXiv Detail & Related papers (2023-09-25T11:54:33Z) - Multivariate Prototype Representation for Domain-Generalized Incremental
Learning [35.83706574551515]
We design a DGCIL approach that remembers old classes, adapts to new classes, and can classify reliably objects from unseen domains.
Our loss formulation maintains classification boundaries and suppresses the domain-specific information of each class.
arXiv Detail & Related papers (2023-09-24T06:42:04Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.